课时作业19建立概率模型时间:45分钟满分:100分——基础巩固类——一、选择题(每小题5分,共40分)1.从装有两个白球和一个红球的袋中逐个不放回地摸两个球,则摸出的两个小球中恰有一个红球的概率为(B)A.B.C.D.解析:不放回地摸出两球共有6种情况,即(白1,红),(白2,红),(白1,白2),(白2,白1),(红,白1),(红,白2),而恰有一个红球的结果有4个.所以P=.2.在5张卡片上分别写1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是(C)A.0.2B.0.4C.0.6D.0.8解析:一个数能否被2或5整除取决于个位数字,故可只考虑个位数字的情况.因为组成的五位数中,个位数共有1,2,3,4,5五种情况,其中个位数为2,4时能被2整除,个位数为5时能被5整除.故所求概率为P==0.6.3.从{1,2,3,4,5}中随机选一个数a,从{1,2,3}中随机选取一个数为b,则b>a的概率为(D)A.B.C.D.解析:从{1,2,3,4,5}中随机选一个数为a,从{1,2,3}中随机选取一个数为b,所得情况有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3)15种,b>a的情况有(1,2),(1,3),(2,3)3种,∴所求的概率为=.4.某农科院在2×2的4块试验田中选出2块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为(D)A.B.C.D.解析:据题意若在4块试验田里选2块种植,且每行每列均有1块,只有2种可能(只能是对角线两块),故其概率为=.5.设集合A={1,2},B={1,2,3},分别从集合A和集合B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,则n的所有可能值为(D)A.3B.4C.2或5D.3或4解析:分别从A和B中各取一个数,一共有6种取法,点P(a,b)恰好落在直线x+y=2上的取法只有1种:(1,1);恰好落在直线x+y=3上的取法有2种:(1,2),(2,1);恰好落在直线x+y=4上的取法也有2种:(1,3),(2,2);恰好落在直线x+y=5上的取法只有1种:(2,3),故事件Cn的概率分别为,,,(n=2,3,4,5),故当n=3或4时概率最大.6.从标有1,2,3,4,5,6的6张纸片中任取2张,那么这2张纸片上的数字之积为偶数的概率为(B)A.B.C.D.解析:Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)},基本事件总数为15.而数字之积为偶数,即至少有一个数是偶数,记为事件A.则A={(1,2),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)},包含基本事件的个数为12,∴P(A)==.7.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4}.若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为(A)A.B.C.D.解析:甲、乙所猜数字的情况有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16种情况,其中满足|a-b|≤1的情况有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10种情况,故所求概率为=.8.甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(C)A.B.C.D.解析:正方形四个顶点可以确定6条直线,甲、乙各自任选一条共有36个基本事件.两条直线相互垂直的情况有5种(4组邻边和对角线),其包括10个基本事件,所以所求概率等于=.二、填空题(每小题5分,共15分)9.设集合P={-2,-1,0,1,2},x∈P且y∈P,则点(x,y)在圆x2+y2=4内部的概率为.解析:以(x,y)为基本事件,用列表法或坐标轴法可知满足x∈P且y∈P的基本事件有25个,且每个基本事件发生的可能性都相等.点(x,y)在圆x2+y2=4内部,则x,y∈{-1,1,0},用列表法或坐标轴法可知满足x∈{-1,1,0}且y∈{-1,1,0}的基本事件有9个.所以点(x,y)在圆x2+y2=4内部的概率为.10.随意安排甲、乙、丙三人在三天节日中值班,每人值班一天,...