电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第一章 集合与函数概念 1.2 函数及其表示 1.2.1 函数的概念优化练习 新人教A版必修1-新人教A版高一必修1数学试题VIP免费

高中数学 第一章 集合与函数概念 1.2 函数及其表示 1.2.1 函数的概念优化练习 新人教A版必修1-新人教A版高一必修1数学试题_第1页
1/5
高中数学 第一章 集合与函数概念 1.2 函数及其表示 1.2.1 函数的概念优化练习 新人教A版必修1-新人教A版高一必修1数学试题_第2页
2/5
高中数学 第一章 集合与函数概念 1.2 函数及其表示 1.2.1 函数的概念优化练习 新人教A版必修1-新人教A版高一必修1数学试题_第3页
3/5
1.2.1函数的概念[课时作业][A组基础巩固]1.函数y=f(x)的图象与直线x=1的公共点有()A.0个B.1个C.0或1个D.无数个解析:当x=1在函数f(x)的定义域内时,函数y=f(x)的图象与直线x=1有一个公共点(1,f(1));当x=1不在定义域内时,函数y=f(x)的图象与直线x=1没有公共点.答案:C2.已知四组函数:①f(x)=x,g(x)=()2;②f(x)=x,g(x)=;③f(n)=2n-1,g(n)=2n+1(n∈N);④f(x)=x2-2x-1,g(t)=t2-2t-1.其中是同一函数的为()A.没有B.仅有②C.②④D.②③④解析:对于第一组,定义域不同;对于第三组,对应法则不同;对于第二、四组,定义域与对应法则都相同.故选C.答案:C3.y=x2(-1≤x≤2)的值域是()A.[1,4]B.[0,1]C.[0,4]D.[0,2]解析:由图可知f(x)=x2(-1≤x≤2)的值域是[0,4].答案:C4.函数y=的定义域为()A.(-∞,2]B.(-∞,2)C.(-∞,1)∪(1,2)D.(-∞,1)∪(1,2]解析:要使函数y=有意义,则解得x≤2且x≠1,所以所求函数的定义域为(-∞,1)∪(1,2].答案:D5.图中可以表示以M={x|0≤x≤1}为定义域,以N={y|0≤y≤1}为值域的函数的图象的是()解析:根据函数的定义,在定义域[0,1]内任意一个元素都有唯一的函数值与它对应,同样,对于值域[0,1]中的任意一个函数值,在定义域内也一定有自变量和它对应.A中函数值域不是[0,1],B中函数定义域不是[0,1],故可排除A,B;再结合函数的定义,可知对于集合M中的任意一个x,N中都有唯一的元素与之对应,故排除D.故选C.答案:C6.下列说法正确的有________.(只填序号)①函数值域中的每一个数都有定义域中的一个数与之对应;②函数的定义域和值域一定是无限集合;③若函数的定义域只有一个元素,则值域也只有一个元素;④对于任何一个函数,如果x不同,那么y的值也不同;⑤f(a)表示当x=a时,函数f(x)的值,这是一个常量.解析:函数是一个数集与另一个数集间的特殊对应关系,所给出的对应是否可以确定为y是x的函数,主要是看其是否满足函数的三个特征.①是正确的.函数值域中的每一个数一定有定义域中的一个数与之对应,但不一定只有一个数与之对应.②是错误的.函数的定义域和值域不一定是无限集合,也可以是有限集,但一定不是空集,如函数f(x)=1,x=1的定义域为{1},值域为{1}.③是正确的.根据函数的定义,定义域中的每一个元素都能在值域中找到唯一元素与之对应.④是错误的.当x不同时,函数值y的值可能相同,如函数y=x2,当x=1和-1时,y都为1.⑤是正确的.f(a)表示当x=a时,函数f(x)的值是一个常量.故填①③⑤.答案:①③⑤7.已知函数f(x)=,若f(x)的定义域为R,则m的取值范围是________.解析:由已知得2x2-mx+3≥0对x∈R恒成立,即Δ=m2-24≤0,∴-2≤m≤2.答案:[-2,2]8.若函数f(x)的定义域为[2a-1,a+1],值域为[a+3,4a],则a的取值范围为________.解析:由区间的定义知⇒1

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第一章 集合与函数概念 1.2 函数及其表示 1.2.1 函数的概念优化练习 新人教A版必修1-新人教A版高一必修1数学试题

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群