3.1.2概率的意义1.给出下列三个说法,其中正确说法的个数是()①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是;③随机事件发生的频率就是这个随机事件发生的概率.A.0B.1C.2D.3[解析]①概率指的是可能性,错误;②频率为,而不是概率,故错误;③频率不是概率,错误.[答案]A2.同时向上抛100个铜板,结果落地时100个铜板朝上的面都相同,你认为这100个铜板更可能是下面哪种情况()A.这100个铜板两面是一样的B.这100个铜板两面是不同的C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的[解析]落地时100个铜板朝上的面都相同,根据极大似然法可知,这100个铜板两面是一样的可能性较大.[答案]A3.“某彩票的中奖概率为”意味着()A.买100张彩票就一定能中奖B.买100张彩票能中一次奖C.买100张彩票一次奖也不中D.购买彩票中奖的可能性为[解析]概率是描述事件发生的可能性大小.[答案]D4.掷一枚质地均匀的正方体骰子(六个面上分别写有1,2,3,4,5,6),若前3次连续掷到“6点朝上”,则对于第4次抛掷结果的预测,下列说法中正确的是()A.一定出现“6点朝上”B.出现“6点朝上”的概率大于C.出现“6点朝上”的概率等于D.无法预测“6点朝上”的概率[解析]随机事件具有不确定性,与前面的试验结果无关.由于正方体骰子的质地是均匀的,所以它出现哪一个面朝上的可能性都是相等的.[答案]C5.在某餐厅内抽取100人,其中有30人在15岁及15岁以下,35人在16岁至25岁之间,25人在26岁至45岁之间,10人在46岁及46岁以上,则从此餐厅内随机抽取1人,此人年龄在16岁至25岁之间的概率约为________.[解析]16岁至25岁之间的人数为35,频率为0.35,故从此餐厅内随机抽取一人,此人年龄在16岁至25岁之间的概率约为0.35.[答案]0.35决策中的概率思想如果我们面临的是从多个可选答案中挑选正确答案的决策问题,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.极大似然法是统计中重要的统计思想方法之一.【典例】为满足同学们体育锻炼的需要,学校购买了100个篮球.但由于采购人员把关不严,发现有30个篮球有质量问题.体育器材室的管理老师把68个质量合格的篮球和2个质量不合格的篮球存放在左边的篮球架上,2个质量合格的篮球和28个质量不合格的篮球存放在右边的篮球架上.体育课上,体育老师派张强和王苏去器材室拿两个篮球.回来后老师发现张强拿回来的篮球是质量合格的,而王苏拿回来的篮球是质量不合格的.问王苏是从哪个篮球架上拿的篮球?张强呢?[思路导引]根据题意与极大似然法,做出判断的依据是“样本出现的可能性最大”.[解]左边的篮球架上有68个质量合格的篮球和2个质量不合格的篮球,拿到质量不合格的篮球的可能性是=;右边的篮球架上有2个质量合格的篮球和28个质量不合格的篮球,拿到质量不合格的篮球的可能性是=.由此可以看出,从右边篮球架上拿到质量不合格的篮球的概率比从左边篮球架上拿到质量不合格的篮球的概率大得多.由极大似然法知,既然王苏拿到的是质量不合格的篮球,所以我们可以做出统计推断认为他是从右边篮球架上拿的.同理可以认为张强是从左边的篮球架上拿到的篮球.在一次试验中,概率大的事件比概率小的事件出现的可能性更大,小概率(接近于0)事件很少发生,而大概率(接近于1)事件经常发生.知道随机事件发生的概率的大小有利于我们做出正确的决策,以降低风险.[针对训练]有A,B两种乒乓球,A种乒乓球的次品率是1%,B种乒乓球的次品率是5%.(1)甲同学买的是A种乒乓球,乙同学买的是B种乒乓球,但甲买到的是次品,乙买到的是正品,从概率的角度如何解释?(2)如果你想买到正品,应选择哪种乒乓球?[解](1)因为A种乒乓球的次品率是1%,所以任选一个A种乒乓球是正品的概率是99%.同理,任选一个B种乒乓球是正品的概率是95%.由于99%>95%,因此“买一个A种乒乓球,买到的是正品”的可能性比“买一个B种乒乓球,买到的是正品”的可能性大,但并不表示“买一...