下载后可任意编辑高一年级数学必修五知识点1.高一年级数学必修五知识点函数模型及其应用本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。2、用函数解应用题的基本步骤是:(1)阅读并且理解题意。(关键是数据、字母的实际意义);(2)设量建模;(3)求解函数模型;(4)简要回答实际问题。常见考法:本节知识在段考和高考中考查的形式多样,频率较高选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。误区提醒:1、求解应用性问题时,不仅要考虑函数本身的定义域,下载后可任意编辑还要结合实际问题理解自变量的取值范围。2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。2.高一年级数学必修五知识点一、公理、定理、推论、逆定理:1.公认的真命题叫做公理。2.其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。3.由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。4.假如一个定理的逆命题是真命题,那么这个逆命题就叫原定理的逆定理。二、类比推理:一道数学题是由已知条件、解决办法、欲证结论三个要素组成,这此要求可以看作是数学试题的属性。假如两道数学题是在一系列属性上相似,或一道是由另一道题来的,这时,就可以运用类比推理的方法,推测其中一道题的属性在另一道题中也存在相同或相似的属性。三、证明:1.对某个命题进行推理的过程称为证明,证明的过程下载后可任意编辑包括已知、求证、证明2.证明的一般步骤:(1)审清题意,明确条件和结论;(2)根据题意,画出图形;(3)根据条件、结论,结合图形,写出已知求证;(4)对条件与结论进行分析;(5)根据分析,写出证明过程3.证明常用的方法:综合法、分析法和反证法。四、辅助线在证明中的应用:在几何题的证明中,有时了为证明需要,在原题的图形上添加一些线度,这些线段叫做辅助线,常用虚线表示并在证明的开始,写出添加过程,在证明中添加的辅助线可作为已知条件参加证明。3.高一年级数学必修五知识点⑴假如数列{a}是公比为q的等比数列,那么,它的前n项和公式是S=也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,假如q可能等于1,则需分q=1和q≠1进行讨论.下载后可任意编辑⑵当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=.⑶若S是以q为公比的等比数列,则有S=S+qS.⑵⑷若数列{a}为等比数列,则S,S-S,S-S,…仍然成等比数列.⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,S成等比数列,T,T,T亦成等比数列万能公式:sin2α=2tanα/(1+tanα)(注:tanα是指tan平方α)cos2α=(1-tanα)/(1+tanα)tan2α=2tanα/(1-tanα)4.高一年级数学必修五知识点二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。下载后可任意编辑II.二次函数的三种表达式一般式:y=ax+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b)/4ax?,x?=(-b±√b-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x的图像,可以看出,二次函数的图像是一条抛物线。IV.抛物线的性质1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b)/4a)当-b/2a=0时,P在y轴上;当Δ=b-4ac=0时...