2022年高中数学选择性必修三同步练习:7.4二项分布与超几何分布【题组一二项分布】1.(2021·北京房山区·高二期末)已知某种药物对某种疾病的治愈率为3,现有3位患有该病的患者服4用了这种药物,3位患者是否会被治愈是相互独立的,则恰有1位患者被治愈的概率为()A.2.(2020·北京高二期末)已知随机变量X服从二项分布,即X则二项分布的参数n,p的值为()A.n4,p3.(2020·山西晋中市)某同学参加学校篮球选修课的期末考试,老师规定每个同学罚篮20次,每罚进一球得5分,不进记0分,已知该同学罚球命中率为60%,则该同学得分的数学期望和方差分别为().A.60,244.(2020·营口市第二高级中学高二期末)从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回地摸取6次,设摸得黑球的个数为X,已知EX3,则m等于()A.25.(多选)(2020·全国高二单元测试)若随机变量ξ~B(5,),则P(ξ=k)最大时,k的值为()A.1C.36.(2021·广东东莞)为迎接8月8日的“全民健身日”,某大学学生会从全体男生中随机抽取16名男生参加1500米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于5.6秒,则称为“好体能”.B.2D.4B.1C.3D.5B.80,120C.80,24D.60,1202764B.964C.364D.34Bn,p,且EX2,DX1.6,12B.n6,p13C.n8,p14D.n10,p1513第1页共10页(1)写出这组数据的众数和中位数;(2)要从这16人中随机选取3人,求至少有2人是“好体能”的概率;(3)以这16人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取3人,记X表示抽到“好体能”学生的人数,求X的分布列7.(2021·山东德州市·高三期末)某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120第2页共10页名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m、n、t的值;(2)若从该校中随机选取3名学生(学生数量足够大),记X为抽取学生的身高在(1.4,1.6]的人数求X的分布列和数学期望.8.(2020·湖北随州市·高二期末)疫情过后,为促进居民消费,某超市准备举办一次有奖促销活动,若顾客一次消费达到500元则可参加一轮抽奖活动,超市设计了两种抽奖方案.在一个不透明的盒子中装有6第3页共10页个质地均匀且大小相同的小球,其中2个红球,4个白球,搅拌均匀.方案一:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得50元的返金券,若抽到白球则获得30元的返金券,可以有放回地抽取3次,最终获得的返金券金额累加.方案二:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得100元的返金券,若抽到白球则不获得返金券,可以有放回地抽取3次,最终获得的返金券金额累加.(1)方案一中,设顾客抽取3次后最终可能获得的返金券的金额为X,求X的分布列;(2)若某顾客获得抽奖机会,试分别计算他选择两种抽奖方案最终获得返金券的数学期望,并以此判断应该选择哪种抽奖方案更合适.【题组二超几何分布】1.(2020·辽宁沈阳市)在箱子中有10个小球,其中有3个红球,3个白球,4个黑球.从这10个球中任取3个.求:(1)取出的3个球中红球的个数为X,求X的数学期望;(2)取出的3个球中红球个数多于白球个数的概率.2.(2021·山东德州市)在全面抗击新冠肺炎疫情这一特殊时期,某大型企业组织员工进行爱心捐款活动.原则上以自愿为基础,每人捐款不超过300元,捐款活动负责人统计全体员工数据后,随机抽取的10名员工的捐款数额如下表:第4页共10页员工编号捐款数额11202803215450513061957300890920010225(1)若从这10名员工中随机选取2人,则选取...