人教A版必修第一册1.3集合的基本运算•已知一个班有30人,其中5人有兄弟,5人有姐妹,你能判断这个班有多少是独生子女吗?如果不能判断,你能说出需哪些条件才能对这一问题做出判断吗?•事实上,如果注意到“有兄弟的人也可能有姐妹”,我们就知道,上面给出的条件不足以判断这个班独生子女的人数,为了解决这个问题,我们还必须知道“有兄弟且有姐妹的同学的人数”.应用本小节集合运算的知识,我们就能清晰地描述并解决上述问题了.两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?问题1:思考:考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5,7},B={2,4,6,7},C={1,2,3,4,5,6,7}.(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.集合C是由所有属于集合A或属于B的所有元素组成的.一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Unionset).记作:A∪B(读作:“A并B”)即:A∪B={x|x∈A,或x∈B}Venn图表示:A∪BAB说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素).1.并集概念A∪BABA∪BAB“”或的理解:三层含义的并集。与是的所有元素组成的集合,,由且。即:又属于元素既属于但。即:但不属于元素属于但。即:但不属于元素属于BABABxAxBAAxBxxABBxAxxBA321}{.3},{.2},{.1探究点1集合并集的运算(1)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}(2)已知集合P={x|-1-3}思考:考察下面的问题,集合C与集合A、B之间有什么关系吗?(1)A={2,4,6,8,10},B={3,5,8,12},C={8}.(2)A={x|x是立德中学今年在校的女同学},B={x|x是立德中学今年在校的高一年级同学},C={x|x是立德中学今年在校的高一年级女同学}.集合C是由那些既属于集合A且又属于集合B的所有元素组成的.一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集(intersectionset).记作:A∩B(读作:“A交B”)即:A∩B={x|x∈A且x∈B}Venn图表示:说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合.2.交集概念ABA∩BA∩BABA∩BB探究点2集合交集的运算(1)设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N=()A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}(2)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5}【解析】(1)易知M={-2,-1,0,1},N={-1,0,1,2,3},据交集定义可知M∩N={-1,0,1},故选B.(2)将集合A、B画在数轴上,如图.由图可知A∩B={x|2