基础练习3乘法公式整式的除法学号姓名得分一、选择题(每题3分,共30分)1.下列各式中,相等关系一定成立的是(A)A.(x-y)2=(y-x)2B.(x+6)(x-6)=x2-6C.(x+y)2=x2+y2D.6(x-2)+x(2-x)=(x-2)(x-6)2.计算x6÷x3的结果是(B)A.x9B.x3C.x2D.23.计算(-3a3)2÷a2的结果是(D)A.-9a4B.6a4C.9a3D.9a44.若a的值使得x2+4x+a=(x+2)2-1成立,则a的值为(C)A.5B.4C.3D.25.若,则x2+y2的值为(A)A.13B.26C.28D.376.(x+2)(x-2)(x2+4)的计算结果是(C)A.x4+16B.-x4-16C.x4-16D.16-x47.19922-1991×1993的计算结果是(A)A.1B.-1C.2D.-28.若计算4m·8m-1÷2m的值为32,则m等于(B)A.1B.2C.3D.49.计算[(x+y)(x-y)-(x-y)2+2y(x-y)]÷2y等于(B)A.2x+2yB.2x-2yC.2y-2xD.-2x-4y10.多项式x2+x+m能被x+5整除,则此多项式也能被下列多项式整除的是(C)A.x-6B.x+6C.x-4D.x+4解析:设x2+x+m=(x+5)(x+n)=x2+nx+5x+5n=x2+(n+5)x+5n,比较系数得n+5=1,所以n=-4,所以x2+x+m=(x+5)(x-4),故选C二、填空题(每题3分,共30分)11.若(3-2x)0=1,则x;(6×106)÷(-3×103)=,(a3-6a2+3a)÷3a=;12.()(5a+1)=1-25a2,(2x-3)()=4x2-9,(-2a2-5b)()=4a4-25b2;13.(x-y+z)(-x+y+z)=[z+()][]=z2-()2;14.(a+b)2=(a-b)2+,a2+b2=(a+b)2+,a2+b2=(a-b)2+;15.a4÷a=,-24x2y3÷(-8x2y2)=,(32a4b7-91a2b6)÷(-31ab3)2=;16.(ab)5÷(ab)2=,(4m+n)2=;[(x+y)2-y(2x+y)-8x]÷2x=;17.102×98=,(2)1022=,992=;18.(3x+2)(3x-2)=,(b+2a)(2a-b)=,(-x+2y)(-x-2y)=;19.若x+y=1,则21x2+xy+21y2的值为;若(x3-2x2+ax+2)÷(x2-4x+1)=x+2,则a=;解析:x2+xy+y2=(x2+2xy+y2)=(x+y)2=;由题意x3-2x2+ax+2=(x2-4x+1)(x+2)=x3-4x2+x+2x2-8x+2=x3-2x2-7x+2,故a=-7。20.多项式x2+kx+25是另一个多项式的平方,则k=。三、解答题21.计算下列各题(每题4分,共28分)①(y+2)(y-2)-(y-1)(y+5)②(b-2)(b2-4)(b+2)③(x+2y-3)(x-2y+3)④992+1012;⑤1002-992+982-972+962-952+…+22-12;⑥3·(22+1)(24+1)…(232+1)+1;⑦(1-221)(1-231)(1-241)…(1-291)(1-2101).22.已知(a+b)2=10,(a-b)2=6,求a2+b2,ab的值。(本题6分)解:∵①①+②得:,∴,②-②得:,∴。23.已知,求,,的值。(本题6分)解:∵,∴,即,∴∵,即∴,∴,∴∵,∴