1.1.1集合的含义及其表示艺术中学数学组刘勇升一、复习元素与集合的含义一般地,我们把研究对象称为元素;把一些元素组成的总体叫做集合.集合中元素的三种性质确定性,互异性,无序性集合与元素的表示与关系集合常用大写拉丁字母A,B,C,…元素常用小写拉丁字母a,b,c,…复习几种数集的表示N:自然数集,非负整数集;N*,N+:正整数集Z:整数集Q:有理数集R:实数集集合的三种表示方法自然语言列举法{a,b,c,d}描述法{xD∈︱P(x)}二、练习例一、下列每组对象能否构成一个集合?()A优秀的学生B我班所有的高个子的同学C2,5,5D方程x2-9=0在实数内的解D例二、(变式练习)下列各组对象(1)接近于0的数的全体;(2)比较小的正整数全体;(3)平面上到点O的距离等于1的点的全体;(4)的近似值的全体其中能够成集合的组数是()A一组B两组C三组D四组2A例三、已知集合A={a-2,a2+5a,12},且-3A,∈求A.分析:已知aA,∈若集合A是用列举法表示,则a一定等于其中的一个元素;若集合A是用描述法表示,则a一定满足集合中元素的共同特征,如方程(组)、不等式等.2323253,3a=-1a=-2Aaaa解:或即