电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

课时跟踪检测(五十)双曲线VIP免费

课时跟踪检测(五十)双曲线_第1页
1/6
课时跟踪检测(五十)双曲线_第2页
2/6
课时跟踪检测(五十)双曲线_第3页
3/6
双曲线练习作业(高二)1.方程表示双曲线,则的取值范围()2曲线与曲线的()焦距相等离心率相等焦点相同不确定3.已知双曲线的渐近线为y=±x,焦点坐标为(-4,0),(4,0),则双曲线方程为()A.-=1B.-=1C.-=1D.-=14.已知双曲线的两个焦点为,是双曲线上的一点,且,,则该双曲线的方程是()5.若双曲线过点(m,n)(m>n>0),且渐近线方程为y=±x,则双曲线的焦点()A.在x轴上B.在y轴上C.在x轴或y轴上D.无法判断是否在坐标轴上6.已知m是两个正数2,8的等比中项,则圆锥曲线x2+=1的离心率为()A.或B.C.D.或7.如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3B.2C.D.8.已知P是双曲线-=1(a>0,b>0)上的点,F1,F2是其焦点,双曲线的离心率是,且,·,=0,若△PF1F2的面积为9,则a+b的值为()A.5B.6C.7D.89、已知点P是以F1、F2为左、右焦点的双曲线左支上一点,且满足,则此双曲线的离心率为()A1F2FBxyA.B.C.D.10.如图,、是双曲线的左、右焦点,过的直线与双曲线的左右两支分别交于点、.若为等边三角形,则双曲线的离心率为()A.4B.C.D.11.设e1、e2分别为具有公共焦点F1、F2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足|,+,|=|,|,则的值为()A.B.2C.D.112.若双曲线x2-ky2=1的一个焦点是(3,0),则实数k=________.13.已知椭圆和双曲线有公共焦点,那么双曲线的渐近线方程为_____14、若椭圆和双曲线有相同的焦点,点是两条曲线的一个交点,则的值为.15.已知双曲线C1:-=1(a>0,b>0)与双曲线C2:-=1有相同的渐近线,且C1的右焦点为F(,0),则a=________,b=________.16.过双曲线-=1(a>0,b>0)的左焦点F作圆x2+y2=的切线,切点为E,延长FE交双曲线右支于点P,若E为PF的中点,则双曲线的离心率为________.17、已知双曲线的左顶点为,右焦点为,为双曲线右支上一点,则最小值为.10.(2012·宿州模拟)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-).点M(3,m)在双曲线上.(1)求双曲线方程;(2)求证:·=0.11.(2012·广东名校质检)已知双曲线的方程是16x2-9y2=144.(1)求双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小.12.如图,P是以F1、F2为焦点的双曲线C:-=1上的一点,已知1·2=0,且|1|=2|2|.(1)求双曲线的离心率e;(2)过点P作直线分别与双曲线的两渐近线相交于P1,P2两点,若1·2=-,21+2=0.求双曲线C的方程.1.(2012·长春模拟)2.已知双曲线-=1(a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥c,则双曲线的离心率e的取值范围为________.3.设A,B分别为双曲线-=1(a>0,b>0)的左,右顶点,双曲线的实轴长为4,焦点到渐近线的距离为.(1)求双曲线的方程;(2)已知直线y=x-2与双曲线的右支交于M、N两点,且在双曲线的右支上存在点D,使,+,=t,,求t的值及点D的坐标.[答题栏]A级1._________2._________3._________4._________5.__________6._________B级1.______2.______7.__________8.__________9.__________答案课时跟踪检测(五十)A级1.A2.A3.D4.B5.选C由,·,=0得,⊥,,设|,|=m,|,|=n,不妨设m>n,则m2+n2=4c2,m-n=2a,mn=9,=,解得∴b=3,∴a+b=7.6.选C依题意得,动点P位于以点A,B为焦点、实轴长为3的双曲线的含焦点B的一支上,结合图形可知,该曲线上与点O距离最近的点是该双曲线的一个顶点,因此|OP|的最小值等于.7.解析: 双曲线x2-ky2=1的一个焦点是(3,0),∴1+=32=9,可得k=.答案:8.解析:双曲线-=1的渐近线为y=±2x,则=2,即b=2a,又因为c=,a2+b2=c2,所以a=1,b=2.答案:129.解析:设双曲线的右焦点为F′.由于E为PF的中点,坐标原点O为FF′的中点,所以EO∥PF′,又EO⊥PF,所以PF′⊥PF,且|PF′|=2×=a,故|PF|=3a,根据勾股定理得|FF′|=a.所以双曲线的离心率为=.答案...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

课时跟踪检测(五十)双曲线

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部