电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

考点31直接证明与间接证明VIP免费

考点31直接证明与间接证明_第1页
1/4
考点31直接证明与间接证明_第2页
2/4
考点31直接证明与间接证明_第3页
3/4
圆学子梦想铸金字品牌温馨提示:此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。考点31直接证明与间接证明1.(2013·北京高考理科·T20)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项,…的最小值记为Bn,dn=An-Bn.(1)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,),写出d1,d2,d3,d4的值;(2)设d为非负整数,证明:dn=-d(n=1,2,3…)的充分必要条件为{an}为公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3…),则{an}的项只能是1或2,且有无穷多项为1【解题指南】(1)根据{dn}的定义求.(2)充分性:先证明{an}是不减数列,再利用定义求dn;必要性:先证明{an}是不减数列,再利用定义证明等差.(3)可通过取特殊值和反证法进行证明.【解析】(1),,,。(2)充分性:若为公差为的等差数列,则.因为是非负整数,所以是常数列或递增数列.,,(n=1,2,3,…).必要性:1圆学子梦想铸金字品牌若,假设是第一个使得的项,则,,,这与矛盾.所以是不减数列.,即,是公差为的等差数列.(3)①首先中的项不能是0,否则,与已知矛盾.②中的项不能超过2,用反证法证明如下:若中有超过2的项,设是第一个大于2的项,中一定存在项为1,否则与矛盾.当时,,否则与矛盾.因此存在最大的i在2到k-1之间,使得,此时,矛盾.综上中没有超过2的项.综合①②,中的项只能是1或2.下面证明1有无数个,用反证法证明如下:若为最后一个1,则,矛盾.因此1有无数个.2.(2013·北京高考文科·T20)给定数列a1,a2,…,an。对i=1,2,…n-l,该数列前i2圆学子梦想铸金字品牌项的最大值记为Ai,后n-i项ai+1,ai+2,…,an的最小值记为Bi,di=Ai-Bi.(1)设数列{an}为3,4,7,1,写出d1,d2,d3的值.(2)设a1,a2,…,an(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…dn-1是等比数列。(3)设d1,d2,…dn-1是公差大于0的等差数列,且d1>0,证明:a1,a2,…,an-1是等差数列。【解题指南】(1)利用di的公式,求d1,d2,d3的值.(2)先求出{dn}的通项,再利用等比数列的定义证明{dn}是等比数列.(3)先证明{an}是单调递增数列,再证明an是数列{an}的最小项,最后证明{an}是等差数列.【解析】(1),,。(2)由是公比大于1的等比数列,且a1>0,可得的通项为且为单调递增数列。于是当时,为定值。因此d1,d2,…dn-1构成首项,公比的等比数列。(3)若d1,d2,…,dn-1是公差大于0的等差数列,则00矛盾.因而k≥2,此时考虑dk-1=Ak-1-Bk-1=ak-1-ak<0,矛盾.因此,an为数列{an}中的最小项.综上,dk=Ak-Bk=ak-an(k=1,2,…,n-1),于是ak=dk+an,从而a1,a2,…,an-1是等差数列.3圆学子梦想铸金字品牌关闭Word文档返回原板块。4

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

考点31直接证明与间接证明

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部