§3模拟方法——概率的应用学习目标核心素养1.记住几何概型的概念和特点.(重点)2.掌握几何概型的计算方法和步骤,准确地把实际问题转化为几何概型问题.(重点、难点)3.了解模拟方法的基本思想,会利用这种思想解决某些具体问题,如求某些不规则图形的近似面积等.(难点)1.通过学习几何概型的概念和特点,培养数学抽象素养.2.通过几何概型的计算公式解决实际问题,提升数学运算素养.1.模拟方法模拟方法是一种非常有效而且应用广泛的方法,所以我们常常借助模拟方法来估计某些随机事件发生的概率,用模拟方法可以在短时间内完成大量的重要试验.2.几何概型向平面上有限区域(集合)G内随机地投掷点M,若点M落在子区域G1G的概率与G1的面积成正比,而与G的形状、位置无关,即P(点M落在G1)=,则称这种模型为几何概型.几何概型中的G也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.3.几何概型的特点与概率计算公式(1)几何概型的特点:①试验中所有可能出现的结果(基本事件)有无限多个.②每个基本事件出现的可能性相等.(2)几何概型的概率计算公式:在几何概型中,事件A的概率的计算公式如下:P(A)=.(3)计算步骤:①判断是否是几何概型,尤其是判断等可能性;②计算基本事件空间与事件A所含的基本事件对应的区域的几何度量(长度、面积或体积)n和m.这是计算的难点;③利用概率公式P(A)=计算.思考:几何概型与古典概型有何区别?[提示]几何概型与古典概型的异同点类型古典概型几何概型异同不同点(基本事件的个数)一次试验的所有可能出现的结果(基本事件)有有限个一次试验的所有可能出现的结果(基本事件)有无限多个相同点(基本事件发生的等可能性)每一个试验结果(即基本事件)发生的可能性大小相等1.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则()A.m>nB.m<nC.m=nD.m是n的近似值D[随机模拟法求其概率,只是对概率的估计.]2.在半径为2的球O内任取一点P,则|OP|>1的概率为()A.B.C.D.A[问题相当于在以O为球心,1为半径的球外,且在以O为球心,2为半径的球内任取一点,所以P==.]3.在长为10cm的线段AB上任取一点P,并以线段AP为边作正方形,这个正方形的面积介于25cm2与49cm2之间的概率为()A.B.C.D.B[ 25<S<49,∴5<AP<7,∴P(25<S<49)==.]4.在1000mL水中有一个草履虫,现从中随机取出3mL水样放到显微镜下观察,则发现草履虫的概率是________.[由几何概型知,P=.]与长度有关的几何概型【例1】(1)某公共汽车站每隔5min有一辆汽车通过,乘客到达汽车站的任一时刻都是等可能的,乘客候车时间不超过3min的概率是________.(2)一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为________.(1)(2)[(1)法一设上一辆车于时刻T1到达,而下一辆车于时刻T2到达,线段T1T2的长度为5,记T是线段T1T2上的点,且TT2的长等于3,记等车时间不超过3min为事件A,事件A(候车时间不超过3min)发生即当点落在线段TT2上,记D=T1T2=5,d=TT2=3,所以P(A)==.即候车时间不超过3min的概率为.法二容易判断这是一个几何概型问题,如图所示.记A为“候车时间不超过3min”,以x表示乘客来到车站的时间,那么每一个试验结果可以表示为x,假定乘客到车站后第一辆汽车来到的时刻为t,依据题意,乘客必在(t-5,t]内来到车站,故D={x|t-5<x≤t},欲使乘客候车时间不超过3min必须满足t-3≤x≤t,所以d={x|t-3≤x≤t},所以P(A)==.(2)如图所示,△ABC中,AB=3,AC=4,BC=5,则△ABC的周长为3+4+5=12.某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率P===.]如果试验的全部结果所构成的区域的几何度量能转化为实际意义上的线段长度,这种模型称为长度型的几何概型.可按下列公式来计算其概率:PA=[跟进训练]1.(1)函数f(x)=x2-x-2,x∈[-5,5],那么任取一点x0∈[-5,5],使f(x0)≤0的概率为()A.1B.C.D.(2)如图,在平面直角坐标系中,射线OT为60°角的终边,在任意角集合中任取一个角,则该角终边落在∠xOT内的概率是________.(1)C(2)[(1)令x2-x-2=0,得x...