清镇四中高二数学(上)必修三导学案主备人:任玉芬审核:教研组上课时间:2014年--月---日2.3变量间相关关系(2课时)课前预习学案一、预习目标1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;2.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。二、预习内容1.举例说明函数关系为什么是确定关系?2.一个人的身高与体重是函数关系吗?3.相关关系的概念:4.什么叫做散点图?5.回归分析,(1)求回归直线方程的思想方法;(2)回归直线方程的求法三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.2.经历用不同估算方法描述两个变量线性相关的过程,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.二、学习重难点:重点:作出散点图和根据给出的线性回归方程系数公式建立线性回归方程难点:对最小二乘法的理解。三、学习过程思考:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?清镇四中高二数学(上)必修三导学案主备人:任玉芬审核:教研组上课时间:2014年--月---日1(一)、相关关系:(1)定义:如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的______性,那么这两个变量之间的关系,叫做相关关系.(2)两类特殊的相关关系:如果散点图中点的分布是从______角到______角的区域,那么这两个变量的相关关系称为正相关,如果散点图中点的分布是从______角到______角的区域,那么这两个变量的相关关系称为负相关.【说明】函数关系是一种非常确定的关系,而相关关系是一种非确定性关系。思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语。吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?2、某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子。你认为这样的结论可靠吗?如何证明这个问题的可靠性?(二)、散点图课本P85探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数。问题:1、对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?2、为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?清镇四中高二数学(上)必修三导学案主备人:任玉芬审核:教研组上课时间:2014年--月---日年龄23273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.623、观察人的年龄的与人体脂肪含量散点图的大致趋势,有什么样的特点?阅读课本85~86P,这种相关关系我们称为什么?还有没有其他的相关关系?它又有怎样的特点?(三)、线性相关、回归直线方程和最小二乘法1.线性相关(1)定义:如果两个变量散点图中点的分布从整体上看大致在一条______附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做__________.(2)最小二乘法:求线性回归直线方程y=bx+a时,使得样本数据的点到它的______________最小的方法叫做最小二乘法,其中a,b的值由以下公式给出:其中,b是回归方程的____________,a是回归方程在y轴上的______.线性回归直线方程为____________2.线性回归直线方程的性质(1)回归直线过样本数据的中心.所谓样本...