平面直角坐标系(第2课时)一、内容和内容解析1.内容平面直角坐标系及相关概念.2.内容解析“平面直角坐标系”是“数轴”的发展,使点与坐标的对应关系顺利实现了从一维到二维的过渡.“平面直角坐标系”的建立使有序数对与平面内的点产生了一一对应,提供了用代数方法来研究几何问题的重要数学工具.上一节课学生在具体情境中学习了有序数对表示物体的位置.本节课先介绍数轴上点与坐标的一一对应,在此基础上说明建立平面直角坐标系的必要性以及合理性,同时引入相关的概念以及平面内点与坐标一一对应的结论,对于平面直角坐标系中象限的概念,本节课只简单介绍,下节课再探讨象限中点的符号特征.一般地,在平面内互相垂直且原点重合,分别位于水平位置与铅直位置的两条数轴组成平面直角坐标系,习惯取向右、向上为正方向.建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标.反过来,对于任何一个坐标,可以在坐标平面内确定它所表示的一个点,从而建立坐标平面内点与有序数对的一一对应,体现数形结合的思想.由以上分析,可以确定本节课的教学重点:平面直角坐标系及相关概念.二、教材解析平面直角坐标系是以数轴为基础的,两者之间存在着密切联系.平面直角坐标系是由两条互相垂直,原点重合的数轴构成的,教科书结合着它的画法介绍有关概念,方便学生在平面直角坐标系中理解相关的概念.教科书注意加强平面直角坐标系与数轴的联系.首先从学生熟悉的数轴出发,给出点在数轴上的坐标的定义,建立点与坐标的对应关系,在此基础上,类比着数轴,探讨在平面内确定点的位置的方法,这样可以帮助学生更好地理解点与坐标的对应关系,顺利地实现由一维到二维的过渡.三、教学目标和目标解析1.教学目标(1)理解平面直角坐标系的相关概念.(2)在平面直角坐标系中,会由点的位置写出点的坐标,由点的坐标确定点的位置.12.目标解析达成目标(1)的标志:理解平面直角坐标系中两条数轴一般具备的特征:互相垂直;原点重合;取向右、向上为正方向;能在平面直角坐标系中理解x轴(横轴)、y轴(纵轴)、原点、坐标、象限等相关概念.达成目标(2)的标志:理解建立平面直角坐标系的必要性,体会平面内点与有序数对的“一一对应”:给一个坐标,就有唯一确定的点与之对应;反之,给一个点,就有唯一确定的坐标与之对应.四、教学问题诊断分析平面内点的坐标是根据数轴上点的坐标来定义的,平面内点与坐标的对应关系虽然与数轴上点与坐标的对应关系类似,但学生毕竟在认识上第一次从一维空间过渡到二维空间,因此理解建立平面直角坐标系的必要性、体会其中蕴含的点与坐标的一一对应关系都比较困难.“7.1.1有序数对”从具体情境中认识物体位置与有序数对的对应,学生易于理解,但由具体情境抽象出平面直角坐标系中点与坐标的一一对应,要求学生有较强的抽象思维能力.因此,确定本课的教学难点:理解建立平面直角坐标系的必要性,体会平面直角坐标系中点与坐标的一一对应关系.五、教学过程设计1.复习引入问题1回顾已学内容,回答下列问题:(1)什么是数轴?请画出一条数轴.(2)如图1,A,B两点所表示的数分别是什么?在数轴上描出“-3”表示的点.师生活动:学生回答问题后,教师引导学生得出数轴上点的坐标的定义——数轴上的点可以用一个数表示,这个数叫做这个点的坐标.例如点A的坐标为-4,点B的坐标为2.反之,已知数轴上点的坐标,这个点的位置就确定了.问题2在数轴上已知点能说出它的坐标,由坐标能在数轴上找到对应点的位置.那么数轴上的点与坐标有怎样的关系?师生活动:数轴上的点与坐标是“一一对应”的.也就是说,在数轴上每一个点都可以2图1用一个坐标来表示,任何一个坐标都可以在数轴上找到唯一确定的点.【设计意图】从学生熟悉的数轴出发,给出数轴上点的坐标的定义,建立点与坐标的一一对应关系.2.形成概念问题3类似于利用数轴确定直线上点的位置,结合上节课学习的有序数对,回答问题:如图2,你能找到一种办法来确定平面内点P的位置吗?师生活动:学生小组讨论解决问题的方法,教师给予适当的引导,然后梳理解决这个问题的过程:点P所在的平...