电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2019-2020年北师大版数学必修二:+3+3+空间两点间的距离公式及答案VIP免费

2019-2020年北师大版数学必修二:+3+3+空间两点间的距离公式及答案_第1页
1/7
2019-2020年北师大版数学必修二:+3+3+空间两点间的距离公式及答案_第2页
2/7
2019-2020年北师大版数学必修二:+3+3+空间两点间的距离公式及答案_第3页
3/7
2019-2020年北师大版数学必修二:第2章+§3+3.3+空间两点间的距离公式及答案-1-/73.3空间两点间的距离公式学习目标核心素养1.会推导和应用长方体对角线长公式.(重点)2.会推导空间两点间的距离公式.(重点)3.能用空间两点间的距离公式处理一些简单的问题.(难点)1.通过推导长方体对角线公式及空间两点间的距离公式提升逻辑推理素养.2.通过用两点间的距离公式解简单的问题培养数学运算素养.1.长方体的对角线(1)连线长方体两个顶点A,C′的线段AC′称为长方体的对角线.(如图)(2)如果长方体的长、宽、高分别为a,b,c,那么对角线长d=a2+b2+c2.2.空间两点间的距离公式(1)空间任意一点P(x0,y0,z0)与原点的距离|OP|=x20+y20+z20.(2)空间两点A(x1,y1,z1),B(x2,y2,z2)间的距离|AB|=x1-x22+y1-y22+z1-z22.思考:空间两点间的距离公式与平面两间点的距离公式的区别与联系?提示:平面两点间的距离公式是空间两点间的距离公式的特例:①在平面直角坐标系xOy中,已知两点A(x1,y1),B(x2,y2),则|AB|=x1-x22+y1-y22;②在x轴上的两点A,B对应的实数分别是x1,x2,则|AB|=|x2-x1|.1.空间直角坐标系中,点A(-3,4,0)和点B(2,-1,6)的距离是()2019-2020年北师大版数学必修二:第2章+§3+3.3+空间两点间的距离公式及答案-2-/7A.243B.221C.9D.86D[|AB|=-3-22+4+12+0-62=86.]2.在空间直角坐标系中,设A(1,2,a),B(2,3,4),若|AB|=3,则实数a的值是()A.3或5B.-3或-5C.3或-5D.-3或5A[由题意得|AB|=1-22+2-32+a-42=3,解得a=3或5,故选A.]3.已知点A(4,5,6),B(-5,0,10),在z轴上有一点P,使|PA|=|PB|,则点P的坐标是________.(0,0,6)[设点P(0,0,z),则由|PA|=|PB|,得0-42+0-52+z-62=0+52+0-02+z-102,解得z=6,即点P的坐标是(0,0,6).]求空间两点间的距离【例1】已知△ABC的三个顶点A(1,5,2),B(2,3,4),C(3,1,5).(1)求△ABC中最短边的边长;(2)求AC边上中线的长度.[解](1)由空间两点间距离公式得|AB|=1-22+5-32+2-42=3,|BC|=2-32+3-12+4-52=6,|AC|=1-32+5-12+2-52=29,∴△ABC中最短边是|BC|,其长度为6.2019-2020年北师大版数学必修二:第2章+§3+3.3+空间两点间的距离公式及答案-3-/7(2)由中点坐标公式得,AC的中点坐标为2,3,72,∴AC边上中线的长度为2-22+3-32+4-722=12.1.求空间两点间的距离问题就是把点的坐标代入距离公式进行计算,其中确定点的坐标或合理设出点的坐标是关键.2.若所给题目中未建立坐标系,需结合已知条件建立适当的坐标系,再利用空间两点间的距离公式计算.1.如果点P在z轴上,且满足|PO|=1(O是坐标原点),则点P到点A(1,1,1)的距离是________.2或6[由题意得P(0,0,1)或P(0,0,-1),所以|PA|=0-12+0-12+1-12=2,或|PA|=0-12+0-12+1+12=6.]求空间点的坐标【例2】已知A(x,5-x,2x-1),B(1,x+2,2-x),求|AB|取最小值时A、B两点的坐标,并求此时的|AB|.[思路探究]解答本题可由空间两点间的距离公式建立关于x的函数,由函数的性质求x,再确定坐标.[解]由空间两点的距离公式得|AB|=1-x2+[x+2-5-x]2+[2-x-2x-1]2=14x2-32x+19=14x-872+57,2019-2020年北师大版数学必修二:第2章+§3+3.3+空间两点间的距离公式及答案-4-/7当x=87时,|AB|有最小值57=357.此时A87,277,97,B1,227,67.解决这类问题的关键是根据点的坐标的特征,应用空间两点间的距离公式建立已知与未知的关系,结合已知条件确定点的坐标.2.在空间直角坐标系中,已知A(3,0,1),B(1,0,-3).在y轴上是否存在点M,使△MAB为等边三角形?若存在,求出点M的坐标;若不存在,说明理由.[解]假设在y轴上存在点M(0,y,0),使△MAB为等边三角形.由题意可知y轴上的所有点都能使|MA|=|MB|成立,所以只要再满足|MA|=|AB|,就可以使△MAB为等边三角形.因为|MA|=32+-y2+12=10+y2,|AB|=25.于是10+y2=25,解得y=±10.故y轴上存在点M,使△MAB为等边三角形,此时点M的坐标为(0,10,0)或(0,-10,0).空间距离公式的应用【例3】如图,在棱长为1的正方体...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2019-2020年北师大版数学必修二:+3+3+空间两点间的距离公式及答案

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部