电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

探究规律问题修改VIP免费

探究规律问题修改_第1页
1/4
探究规律问题修改_第2页
2/4
探究规律问题修改_第3页
3/4
探究规律问题【备考点睛】近年来,探索规律的题目成为数学中考的一个热点,从填空、选择到解答题中都可见到这类探究规律问题,。这类问题题目分为题设和结论两部分,通常题设部分给出一些数量关系或图形变换关系,通过观察分析,要求学生找出这些关系中存在的规律。这种数学题目本身存在一种数学探索的思想,体现了数学思想从特殊到一般的发现规律,是中考的一个难点,往往出现在填空选择的最后一两道题、或解答题的最后几题,应引起考生的重视。规律探索型问题涉及的基础知识非常广泛,题目没有固定的形式,因此没有固定的解题方法。它既能充分地考察学生对基础知识掌握的熟悉程度,又能较好地考察学生的观察、分析、比较、概括及发散思维的能力及创新意识。1.(2010山东日照)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()(A)15(B)25(C)55(D)12252.世界上著名的莱布尼茨三角形如图所示:则排在第10行从左边数第3个位置上的数是()A、B、C、D、仔细分析与研究后可以发现:(1)每一行左数从第一个数为该行的倒数;(2)每行中间及偏左的数,都等于它左上角的数减去它左边的数,如第3行中,,如第7行中,依(1)和(2)可知:第9行左数第2个数为;第10行左数第2个数为,第10行左数第3个数应为3.(2010安徽中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()(A)495B)497C)501D)5034.(2010广东茂名)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n个“口”字需用棋子A.4n枚B.(4n-4)枚C.(4n+4)枚D.n2枚5.(2010广东深圳)观察下列算式,用你所发现的规律得出的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…A.2B.4C.6D.86.(2010江苏淮安)观察下列各式:……计算:3×(1×2+2×3+3×4+…+99×100)=A.97×98×99B.98×99×100C.99×100×101D.100×101×1027.(2010山东济南)如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由点开始按的顺序沿菱形的边循环运动,行走2010厘米后停下,则这只蚂蚁停在点.8.观察下列等式:,,,,,通过观察,用你所发现的规律确定的个位数字是。9.(2010江苏连云港)如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,A2C、B2C的中点A3、B3,依次取下去….利用这一图形,能直观地计算出+++…+=________.10.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆10根火柴棒时,共需要摆根火柴棒.第2个“口”第1个“口”第3个“口”第n个“口”………………?ADBADCFEBADA1A2A3B1B2B3CAFDEBG11.(2010四川成都)已知是正整数,是反比例函数图象上的一列点,其中.记,,若(是非零常数),则A1·A2·…·An的值是________________________(用含和的代数式表示).12.如图,是用火棍摆成边长分别是1,2,3根火柴棍时的正方形,当边长为根火柴棍时,若摆出的正方形所用的火柴棍的根数为,则=。(用含的代数式表示,为正整数)。13.将正六边形纸片按下列要求分割(每次分割,纸片均不得有剩余):第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中一个菱形再分割成一个正六边形和两个全等的正三角形;第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形;然后选取其中一个菱形再分割成一个正六边形和两个全等的正三角形。按上述分割方法进行下去……(1)请你在图中画出第一次分割的示意图;(2)若原正六边形的面积为,请你通过操作和观察,将第...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

探究规律问题修改

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部