电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

《角的平分线的性质》第二课时参考教案VIP免费

《角的平分线的性质》第二课时参考教案_第1页
1/5
《角的平分线的性质》第二课时参考教案_第2页
2/5
《角的平分线的性质》第二课时参考教案_第3页
3/5
§12.3角的平分线的性质(二)教学目标(一)教学知识点:角的平分线的性质(二)能力训练要求1.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.2.能应用这两个性质解决一些简单的实际问题.(三)情感与价值观要求通过折纸、画图、文字一符号的翻译活动,培养学生的联想、探索、概括归纳的能力,激发学生学习数学的兴趣.教学重点:角平分线的性质及其应用.教学难点:灵活应用两个性质解决问题.教学方法:探索、归纳的方法.教学过程一.创设情境,引入新课[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?二.导入新课角平分线的性质即已知角的平分线,能推出什么样的结论.操作:1.折出如图所示的折痕PD、PE.2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?拿出两名同学的画图,放在投影下,请大家评一评,以达明确概念的目的.1/5问题1:你能用文字语言叙述所画图形的性质吗?问题2:(出示投影片)能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表:学生通过讨论作出下列概括:已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.由已知事项推出的事项:PD=PE.【师】如何证明?请同学们试一试。证明:略(详见课本P49页)。于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.[师]那么,在角的内部到角的两边距离相等的点是否在角的平分线上呢?(出示投影)问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:2/5于是,我们得到角平分线的性质的逆定理:【师】在角的内部到角的两边的距离相等的点在角的平分线上。【师】你能证明吗?请同学们试一试。下面请同学们思考一个问题.思考:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?分析:1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?2.比例尺为1:20000是什么意思?讨论结果展示:1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了.1m=100cm,所以比例尺为1:20000,其实就是图中3/51cm表示实际距离200m的意思.作图如下:作法:第一步:尺规作图法作出∠AOB的平分线OP.第二步:在射线OP上截取OC=2.5cm,确定C点,C点就是集贸市场所建地了.总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题.[例]如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.因为BM是△ABC的角平分线,点P在BM上.所以PD=PE.同理PE=PF.所以PD=PE=PF.即点P到三边AB、BC、CA的距离相等.三.随堂练习1.课本P50页练习.第1、2题。2.课本P51页习题12.3第4题。在这里要提醒学生直接利用角平分线的性质,无须再证三角形全等.四.课时小结今天,我们学习了关于角平分线的两个性质:①角平分线上的点到角的两边的距离相等;②到角的两边距离相等的点在角的平分线上.它们具有互逆性,可以4/5看出,随着研究的深入,解决问题越来越简便了.像与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分线的性质,而不必再去证明三角形全等而得出线段相等.五.课后作业:课本P51页习题12.3第2、3、5题.5/5

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

《角的平分线的性质》第二课时参考教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部