第二讲概率(A)1.(2013·高考江西卷)集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是()A.B.C.D.2.(2013·高考陕西卷)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A.1-B.-1C.2-D.3.(2013·温州市适应性测试)记a,b分别是投掷两次骰子所得的数字,则方程x2-ax+2b=0有两个不同实根的概率为()A.B.C.D.4.从-=1(其中m,n∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为()A.B.C.D.5.(2013·高考湖南卷)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=()A.B.C.D.6.(2013·高考重庆卷)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________.7.下面程序框图可用来估计π的值(假设函数CONRND(-1,1)是产生随机数)的函数,它能随机产生区间(-1,1)内的任何一个实数).如果输入1000,输出的结果为788,则由此可估计π的近似值为________.(保留四位有效数字)8.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是________.9.(2013·高考湖南卷)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)完成下表,并求所种作物的平均年收获量:Y51484542频数4(2)在所种作物中随机选取一株,求它的年收获量至少为48kg的概率.10.某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲停车付费恰为6元的概率;(2)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.11.(2012·高考江西卷)如图所示,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O恰好是正三棱锥的四个顶点的概率;(2)求这3点与原点O共面的概率.答案:1.【解析】选C.从A,B中各任取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)6个基本事件,满足两数之和等于4的有(2,2),(3,1)2个基本事件,所以P==.2.【解析】选A.取面积为测度,则所求概率为P====1-.3.【解析】选B.由题意知分别投两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个;而方程x2-ax+2b=0有两个不同实根的条件是a2-8b>0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.4.【解析】选B.当方程-=1表示椭圆、双曲线、抛物线等圆锥曲线时,不能有m<0,n>0,所以方程-=1表示椭圆、双曲线、抛物线等圆锥曲线的(m,n)有(2,-1),(3,-1),(2,2),(3,2),(2,3),(3,3),(-1,-1),共7种,其中表示焦点在x轴上的双曲线时,则m>0,n>0,有(2,2),(3,2),(2,3),(3,3),共4种,所以所求概率P=.5.【解析】选D.由于满足条件的点P发生的概率为,且点P在边CD上运动,根据图形的对称性当点P在靠近点D的CD边的分点时,EB=AB(当点P超过点E向点D运动时,PB>AB).设AB=x,过点E作EF⊥AB交AB于点F,则BF=x.在Rt△FBE中...