百度文库-让每个人平等地提升自我11《二次根式》提高测试(一)判断题:(每小题1分,共5分)1.ab2)2(=-2ab.⋯⋯⋯⋯⋯⋯⋯()【提示】2)2(=|-2|=2.【答案】×.2.3-2的倒数是3+2.()【提示】231=4323=-(3+2).【答案】×.3.2)1(x=2)1(x.⋯()【提示】2)1(x=|x-1|,2)1(x=x-1(x≥1).两式相等,必须x≥1.但等式左边x可取任何数.【答案】×.4.ab、31ba3、bax2是同类二次根式.⋯()【提示】31ba3、bax2化成最简二次根式后再判断.【答案】√.5.x8,31,29x都不是最简二次根式.()29x是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分)6.当x__________时,式子31x有意义.【提示】x何时有意义?x≥0.分式何时有意义?分母不等于零.【答案】x≥0且x≠9.7.化简-81527102÷31225a=_.【答案】-2aa.【点评】注意除法法则和积的算术平方根性质的运用.8.a-12a的有理化因式是____________.【提示】(a-12a)(________)=a2-22)1(a.a+12a.【答案】a+12a.9.当1<x<4时,|x-4|+122xx=________________.【提示】x2-2x+1=()2,x-1.当1<x<4时,x-4,x-1是正数还是负数?x-4是负数,x-1是正数.【答案】3.10.方程2(x-1)=x+1的解是____________.【提示】把方程整理成ax=b的形式后,a、b分别是多少?12,12.【答案】x=3+22.11.已知a、b、c为正数,d为负数,化简2222dcabdcab=______.【提示】22dc=|cd|=-cd.【答案】ab+cd.【点评】 ab=2)(ab(ab>0),∴ab-c2d2=(cdab)(cdab).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小.13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式.14.若1x+3y=0,则(x-1)2+(y+3)2=____________.【答案】40.【点评】1x≥0,3y≥0.当1x+3y=0时,x+1=0,y-3=0.15.x,y分别为8-11的整数部分和小数部分,则2xy-y2=____________.百度文库-让每个人平等地提升自我22【提示】 3<11<4,∴_______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x=?小数部分y=?[x=4,y=4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16.已知233xx=-x3x,则⋯⋯⋯⋯⋯⋯()(A)x≤0(B)x≤-3(C)x≥-3(D)-3≤x≤0【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17.若x<y<0,则222yxyx+222yxyx=⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A)2x(B)2y(C)-2x(D)-2y【提示】 x<y<0,∴x-y<0,x+y<0.∴222yxyx=2)(yx=|x-y|=y-x.222yxyx=2)(yx=|x+y|=-x-y.【答案】C.【点评】本题考查二次根式的性质2a=|a|.18.若0<x<1,则4)1(2xx-4)1(2xx等于⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A)x2(B)-x2(C)-2x(D)2x【提示】(x-x1)2+4=(x+x1)2,(x+x1)2-4=(x-x1)2.又 0<x<1,∴x+x1>0,x-x1<0.【答案】D.【点评】本题考查完全平方公式和二次根式的性质.(A)不正确是因为用性质时没有注意当0<x<1时,x-x1<0.19.化简aa3(a<0)得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A)a(B)-a(C)-a(D)a【提示】3a=2aa=a·2a=|a|a=-aa.【答案】C.20.当a<0,b<0时,-a+2ab-b可变形为⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A)2)(ba(B)-2)(ba(C)2)(ba(D)2)(ba【提示】 a<0,b<0,∴-a>0,-b>0.并且-a=2)(a,-b=2)(b,ab=))((ba.【答案】C.【点评】本题考查逆向运用公式2)(a=a(a≥0)和完全平方公式.注意(...