凤台四中邓丽春名称图形性质判定等腰三角形ABC等边对等角三线合一等角对等边两边相等两腰相等轴对称图形温故知新观察下列图片,你有什么印象?你发现了什么?这就是今天我们要学的等边三角形等边三角形::((正三角形正三角形))三条边都相等的三角形三条边都相等的三角形..等边三角形是特殊的等腰三角形等边三角形是特殊的等腰三角形..学习园地我们已经知道等腰三角形和等边三角形的定义,那么它们之间有什么关系呢?等腰三角形等边三角形等边三角形是一种特殊的等腰三角形11、等边三角形的内角都相等吗、等边三角形的内角都相等吗??为什么为什么??ABC AB=AC=BCAB=AC=BC∴∠∴∠A=∠B=∠C(A=∠B=∠C(在同一个在同一个三角形中三角形中等边对等角等边对等角)) ∠ ∠A+∠B+∠C=180°A+∠B+∠C=180°∴∠∴∠A=∠B=∠C=60°A=∠B=∠C=60°探索星空:探究性质一探索星空:探究性质一22、等边三角形有、等边三角形有““三线合一三线合一””的性质吗的性质吗??为什为什么么??结论结论::等边三角形等边三角形每条边上的中线每条边上的中线,,高和所对高和所对角的平分线角的平分线都三线合一。(所有的高线,角平都三线合一。(所有的高线,角平分线,中线的长度相等。)分线,中线的长度相等。)ABC探索星空:探究性质二探索星空:探究性质二33、等边三角形是轴对称图形吗、等边三角形是轴对称图形吗??有几条对称轴有几条对称轴?探索星空:探究性质三探索星空:探究性质三ABC等边三角形的性质2.等边三角形的内角都相等,且等于60°3.等边三角形各边上中线,高和所对角的平分线都三线合一.4.等边三角形是轴对称图形,有三条对称轴.1.三条边相等思考题?一个三角形满足什么条件就是等边三角形? ∠ ∠A=∠B=∠C=60°A=∠B=∠C=60°∴∴AB=AC=BC(AB=AC=BC(在同一个三在同一个三角形中角形中等角对等边等角对等边))ABC探索星空:探究判定一探索星空:探究判定一11、三个内角都等于、三个内角都等于60°60°的三角形是等边三角形的三角形是等边三角形??∴△∴△ABCABC是等边三角形是等边三角形假若AB=AC.则∠B=∠C(1)、当顶角∠A=60°时∠B=C=60°∠∴∠A=B=C=60°∠∠∴△ABC是等边三角形(2)、当底角∠B=60时∠C=60°∠A=180-(60°+60°)=60°∴∠A=B=C=60°∠∠∴△ABC是等边三角形证明:有一个内角等于60°的等腰三角形是等边三角形ABC2.三个角都相等的三角形是等边三角形.3.有一个角是60°的等腰三角形是等边三角形.1.三边都相等的三角形是等边三角形.一般三角形等边三角形ABC等腰三角形等边三角形ABC AB=BC=AC∴△ABC是等边三角形 ∠B=600AB=BC∴△ABC是等边三角形 ∠A=B=C∠∠∴AB=BC=AC∴△ABC是等边三角形我们已经知道等边三角形是一种特殊的等腰三角形,能述说等边三角形与等腰三角形在定义,性质和判定的异同吗?定义性质判定等腰三角形等边三角形有两条边相等1、两边、两角相等2、三线合一3、一条对称轴1、三边、三角相等2、三线合一3、三条对称轴有三条边相等1、定义2、等角对等边1、定义2、三个角都相等3、等腰三角形有一个角是600例1等边三角形ABC的周长等于21㎝,求:(1)各边的长;(2)各角的度数。例1等边三角形ABC的周长等于21㎝,求:(1)各边的长;(2)各角的度数。解:(1) AB=BC=CA,又 AB+BC+CA=21㎝(已知)∴AB=BC=CA=21/3=7(㎝)解:(1) AB=BC=CA,又 AB+BC+CA=21㎝(已知)∴AB=BC=CA=21/3=7(㎝)(2) AB=BC=CA,(已知)∴∠A=∠B=∠C=60°(等边三角形的每个内角都等于60°)(2) AB=BC=CA,(已知)∴∠A=∠B=∠C=60°(等边三角形的每个内角都等于60°)AABBCC1、下列四个说法中,不正确的有()(A)0个(B)1个(C)2个(D)3个三个角都相等的三角形是等边三角形。有两个角等于60°的三角形是等边三角形。有一个角是60°的等腰三角形是等边三角形。有两个角相等的等腰三角形是等边三角形。2、等边三角形的对称轴有()(A)1条(B)2条(C)3条(D)4条3、等边三角形中,高、中线、角平分线共有()(A)3条(B)6条(C)9条(D)7条1、下列四个说法中,不正确的有()(A)0个(B)1个...