第2课时平方根教学目标:【知识与技能】1.掌握平方根的概念,明确平方根与算术平方根之间的联系与区别.2.能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系.【过程与方法】通过探索平方根与算术平方根的区别与联系,学会用算术平方根解决平方根的问题.【情感态度】通过对平方根的学习,培养学生从多方面,多角度分析问题,解决问题的思想意识,养成全面分析问题的习惯.【教学重点】平方根的概念和求一个数的平方根.【教学难点】平方根和算术平方根的联系与区别.教学过程:一、情境导入,初步认识问题已知一个数的平方等于16,这个数是多少?如何表示这个数呢?【教学分析】由于42=16,(-4)2=16,故平方等于16的数有两个:4和-4,把4和-4叫做16的平方根,记为4=√16,则-4=-√16,把4和-4称为16的平方根.提出平方根定义:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,即若x2=a,则x为a的平方根,记为x=±√a.二、思考探究,获取新知把求一个数a的平方根的运算,叫做开平方,而平方运算与开平方运算互为逆运算,根据这种关系,可以求一个数的平方根.例1求下列各数的平方根和算术平方根.分析:一个正数的平方根有两个,且互为相反数,其中正的平方根为算术平方根.可根据平方与开平方的互逆关系,通过平方运算求一个数的平方根.【教学说明】一个正数的平方根有两个,不要丢掉其中负的平方根,算术平方根是其中的一个正平方根,不要弄错了符号.求平方根时一定要把所求的数化成x2的形式,同时注意正数有两个平方根.例2计算下列各题.分析:(1)√484就是求484的算术平方根;(2)是求1214的平方根,可把带分数化成假分数;(4)应先求出被开方数的大小.【教学说明】(1)混合运算的运算顺序是先算开平方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学时可根据平方根,算术平方根的意义和表示方法来解,熟练后直接根据√a2=a(a>0)来解.三、运用新知,深化理解四、师生互动,课堂小结根据下列问题梳理所学知识,学生交流.问题:1.什么叫一个数的平方根?布置作业:1.布置作业:从教材“习题6.1”中选取.2.完成练习册中本课时的练习.板书设计:第2课时平方根教学反思:本课时教学重在挖掘平方根与算术平方根间的区别与联系,通过实例训练引导学生认识新知识,形成计算能力.