电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

阅读与思考向量及向量符号的由来VIP免费

阅读与思考向量及向量符号的由来_第1页
1/21
阅读与思考向量及向量符号的由来_第2页
2/21
阅读与思考向量及向量符号的由来_第3页
3/21
§2.1平面向量的实际背景及其基本概念太原市第五十三中学校杨慧慧学习目标(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示。(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并能弄清平行向量、相等向量、共线向量的关系。(3)通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别。你还记得这些图分别表示什么吗?当时物理老师要求我们注意什么呢?1.向量的定义我们把既有大小,又有方向的量叫做向量.2.向量的表示用有向线段表示①几何表示法:②字母表示法:BA课本上用小写黑体表示再如ABcba,,•向量最初被应用于物理学,被称为矢量.很多物理量,如力、速度、位移、电场强度、磁场强度等都是向量。向量及向量符号的由来•大约公元前350年,古希腊著名学者亚里士多德就知道了力可以表示为向量.向量一词来自力学、解析几何中的有向线段。•最先使用有向线段表示向量的是英国科学家牛顿。向量及向量符号的由来说明:有向线段与向量的区别有向线段要素:起点、方向、长度向量要素:大小、方向ABCDABCD有向线段AB、CD是不同的。向量AB、CD是同一个向量。33.向量的有关概念.向量的有关概念单位向量:长度为1个单位长度的向量。(2)两个特殊向量:,零向量:长度为零的向量(规定方向任意).表示为:0|0|0AB||AB(1)向量的长度(模):表示向量的有向线段的长度向量的大小表示为:说明:单位向量都只规定了大小!思考:•单位向量唯一吗?•平面直角坐标系内,所有起点在原点的单位向量,它们终点的轨迹是什么图形?向量的有关概念向量是不能比较大小的向量的模是可以进行大小比较的.有意义没有意义ba||||baab例.试根据图中的比例尺以及三地的位置,在图中分别用向量表示A地至B、C两地的位移,并求出A地至B、C两地的实际距离(精确到1km).1:8000000规定:零向量与任一向量平行;记作:0//a平行向量:方向相同或相反的非零向量叫平行向量.表示为://ababc4、向量的关系:相等向量:长度相等且方向相同的向量注:1.若向量相等,则记为;2.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关。,abababca=b=cA1B1=A2B2=A3B3=A4B4A1B1A2B2A3B3A4B4任一组平行向量都可以平移到同一直线上.OabcABC,,aOAbOBcOC��平行向量也叫共线向量ACBDFEO例.如图,设是正六边形的中心,分别写出图中与向量、、相等的向量.OAOBOC11CBDOFEOABCDEF(3)与向量共线的向量有哪几个?OA(2)与向量长度相等的向量有多少个?OA练习∶上题中(1)向量OA与FE相等吗?下列几个命题:其中真命题为则若,则且若则若则若是零向量则若.//,//,//)5(.//|,|||)4(.|,|||)3(.,,)2(,0||)1(cacbbabababababacacbbaaa应用(1)(2)判断对错:2、若A、B、C、D四点不在同一条直线上,若1、用有向线段表示两个方向相同但长度不同的向量时,若起点相同,则终点可能相同..ABCD,为平行四边形则四边形DCAB应用错误正确课外阅读:向量符号的由来•课本P79阅读•阅读后谈谈你的感想向量向量向量的大小向量的大小(模)(模)向量的方向向量的方向向量的表示零向量单位向量平行向量(共线向量)

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

阅读与思考向量及向量符号的由来

教育精品店+ 关注
实名认证
内容提供者

优良的服务

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部