电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

指数与指数幂的运算VIP免费

指数与指数幂的运算_第1页
1/11
指数与指数幂的运算_第2页
2/11
指数与指数幂的运算_第3页
3/11
指数与指数幂的运算【学习目标】1.理解分数指数的概念,掌握有理指数幂的运算性质(1)理解n次方根,n次根式的概念及其性质,能根据性质进行相应的根式计算;(2)能认识到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化;(3)能利用有理指数运算性质简化根式运算.2.掌握无理指数幂的概念,将指数的取值范围推广到实数集;3.通过指数范围的扩大,我们要能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力;4.通过对根式与分数指数幂的关系的认识,能学会透过表面去认清事物的本质.【要点梳理】要点一、整数指数幂的概念及运算性质1.整数指数幂的概念2.运算法则(1)nmnmaaa;(2)mnnmaa;(3)0anmaaanmnm,;(4)mmmbaab.要点二、根式的概念和运算法则1.n次方根的定义:若xn=y(n∈N*,n>1,y∈R),则x称为y的n次方根.n为奇数时,正数y的奇次方根有一个,是正数,记为ny;负数y的奇次方根有一个,是负数,记为ny;零的奇次方根为零,记为00n;n为偶数时,正数y的偶次方根有两个,记为ny;负数没有偶次方根;零的偶次方根为零,记为00n.2.两个等式(1)当1n且*nN时,nnaa;(2))(||)(,为偶数为奇数nanaann要点诠释:①要注意上述等式在形式上的联系与区别;②计算根式的结果关键取决于根指数的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a的形式,这样能避免出现错误.要点三、分数指数幂的概念和运算法则为避免讨论,我们约定a>0,n,mN*,且mn为既约分数,分数指数幂可如下定义:要点四、有理数指数幂的运算1.有理数指数幂的运算性质(1);aaa(2)();aa(3)();abab当a>0,p为无理数时,ap是一个确定的实数,上述有理数指数幂的运算性质仍适用.要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(;(3)幂指数不能随便约分.如2142)4()4(.2.指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a2-b2=(a-b)(a+b),(a±b)2=a2±2ab+b2,(a±b)3=a3±3a2b+3ab2±b3,a3-b3=(a-b)(a2+ab+b2),a3+b3=(a+b)(a2-ab+b2)的运用,能够简化运算.【典型例题】类型一、根式例1.求下列各式的值:(1)5242544(3);(2)(10);(3)(3);(4)()ab.【答案】-3;10;3;0abba(a>b)(a=b)(ab)(a=b)(a

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

指数与指数幂的运算

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群