高考数学《排列、组合与二项式定理》第一轮复习-1-计数原理一、高考要求:掌握分类计数原理及分步计数原理,并能用这两个原理分析和解决一些简单的问题.二、知识要点:1.分类计数原理(又称加法原理):完成一件事,有n类办法,在第1类办法中有1m种不同的方法,在第2类办法中有2m种不同的方法,⋯⋯,在第n类办法中有nm种不同的方法,那么完成这件事共有12nNmmmL种不同的方法.2.分步计数原理(又称乘法原理):完成一件事,需要分成n个步骤,做第1步有1m种不同的方法,做第2步有2m种不同的方法,⋯⋯,做第n步有nm种不同的方法,那么完成这件事共有12nNmmmL种不同的方法.三、典型例题:例1:(1)有红、黄、白色旗子各n面(n>3),取其中一面、二面、三面组成纵列信号,可以有多少不同的信号?(2)有1元、2元、5元、10元的钞票各一张,取其中一张或几张,能组成多少种不同的币值?(1)解因为纵列信号有上、下顺序关系,所以是一个排列问题,信号分一面、二面、三面三种情况(三类),各类之间是互斥的,所以用加法原理:①升一面旗:共有3种信号;②升二面旗:要分两步,连续完成每一步,信号方告完成,而每步又是独立的事件,故用乘法原理,因同色旗子可重复使用,故共有3×3种信号;③升三面旗:有N=3×3×3种信号,所以共有39种信号.(2)解计算币值与顺序无关,所以是一个组合问题,有取一张、二张、三张、四张四种情况,它们彼此互斥的,用加法原理,因此,不同币值有N=14C+24C+34C+44C=15(种).例4:(1)5本不同的书放在3个不同的书包中,有多少种不同的方法?(2)3个旅客在5家旅店住宿,有多少种不同的方法?(1)解每本书有3种不同方法,共有35=243种.(2)解每个人有5种选择,共有53=125种.四、归纳小结:两个基本原理的共同点是,都是研究“完成一件事,共有多少种不同的方法”,它们的区别在于一个与“分类”有关,一个与“分步”有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论哪一种办法中的哪一种都能单独的完成这件事,求完成这件事高考数学《排列、组合与二项式定理》第一轮复习-2-的方法种数,就用分类计数原理;如果完成一件事,需要分成n个步骤,各个步骤都不可缺少,需要完成所有的步骤才能完成这件事,而完成每一个步骤又各有若干方法,求完成这件事方法的种数,就用分步计数原理.五、基础知识训练:(一)选择题:1.将5封信投入3个邮筒,不同的投法共有()A.35种B.53种C.3种D.15种2.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有()A.43种B.34种C.18种D.36种3.已知集合M={1,-1,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是()A.18B.10C.16D.144.用1,2,3,4四个数字在任取数(不重复取)作和,则取出这些数的不同的和共有()A.8个B.9个C.10个D.5个(二)填空题:5.由数字2,3,4,5可组成________个三位数,_________个四位数,________个五位数.6.用1,2,3⋯,9九个数字,可组成__________个四位数,_________个六位数.7.从2,3,5,7这四个数中,取出两数来作假分数,这样的假分数有______个.8.全国移动电话号码从1999年7月22日零时开始升到10位,前四位号码为1390,剩下的位数码从0,1,2,⋯,9中任取6个数字组成(可以重复),该方案的移动电话用户最多能容纳户.9.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有_______种不同的选法.要买上衣、裤子各一件,共有_________种不同的选法.10.现有甲组3人,乙组3人,两组进行乒乓球单打对抗(甲组每人必须和乙组每人赛一场),一共有比赛的场数是.(三)解答题:11.有不同的数学书11本,不同的物理书8本,不同的化学书5本,从中取出不同学科的书2本,有多少种不同的取法?12.用0,1,2,3,4这5个数字,(1)组成比1000小的正整数有多少种不同的方法?(2)组成无重复数字的三位偶数有多少种不同的方法?高考数学《排列、组合与二项式定理》第一轮复习-3-13.五封不同的信投入四个邮筒,(1)随便投完五封信,有多少种不同投法?(2)每个邮筒中至少要有一封信,有多少种不同投法?高考数学《排列、组合与二项式定理》第一轮复习-4-排列一、高考要求:理解排列的意义,掌握排列数的计算公式,并能用它解决一些简单的问题.二、知...