8.3实际问题与二元一次方程组教学目标:1、会根据具体问题中的数量关系,经过自主探索、互相交流,列出二元一次方程组并求解,养成对所得结果进行检验的意识;2、能熟练地列二元一次方程组解决简单的实际问题;3、通过将实际问题中的数量关系转化为二元一次方程组,体会数学化的过程,提高用数学分析和解决问题的能力。重点难点:重点:根据简单应用题的题意列出二元一次方程组。难点:将实际情景中的数量关系抽取出来,并用二元一次方程组表示。教学过程前面我们结合实际问题,讨论了用方程组表示问题中的条件以及如何解方程组。本节我们继续探究如何用二元一次方程组解决实际问题。同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流。(一)解方程组(信息感知)(二)探究2据以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1.5,现要在一块长200m,宽100m的长方形土地上种植这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量的比是3:4(结果取整数)?[来源:学|科|网Z|X|X|K]问题中要达到的结果是“甲、乙两种作物的总产量的比是3:4”,而为达到这一点就需要适当确定两个长方形。本题具有开放性,即它的答案不唯一。分析:如图8.3—l,一种种植方案为:甲、乙两种作物的种植区域分别为长方形AEFD和BCFE。设AE=xm,BE=ym,根据问题中涉及长度、产量的数量关系,列方程组注:还有其他方案,例如画出与这块土地的长平行的一条线,将这块土地分割为两个长方形。这条直线的具体确定方法,可以通过列方程组产生。(三)探究3图中黑白相间的线表示铁路,其他线表示公路。如图8.3—2,长青化工厂与A,B两地有公路、铁路相连。这家工厂从A地购买一批每吨l000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?问题中的一些已知条件是用图及其标注数据给出的。分析:销售款与产品数量有关,原料费与原料数量有关。设产品重x吨,原料重y吨。根据题中数量关系填写下表。产品x吨原料y吨合计公路运费(元)铁路运费(元)价值(元)(1)题目所求数值是______,为此需先解出______与______。(2)因此,这批产品的销售款比原料费与运输费的和多_______元。(5)从以上探究可以看出,方程组是解决含有多个未知数问题的重要工具。列出方程组要根据问题中的数量关系,解出方程组的解后,应进一步考虑它是否符合问题的实际意义。(四)小结(引导学生总结本节的知识点,解题思路。)(五)作业布置