课时作业(八)1.3.1三角函数诱导公式(第1课时)1.cos315°等于()A.B.-C.-D.答案D解析cos315°=cos(360°-45°)=cos45°=,故选D.2.的值为()A.±B.C.-D.答案D解析=|cos(-60°)|=,故选D.3.点M(2,tan300°)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限答案D4.sinπ·cosπ·tan(-π)的值是()A.-B.C.-D.答案A解析sinπ·cos·tan(-π)=sin(π+)cos(π-)tan(-2π+)=-sin·(-cos)tan(π-)=-.5.cos(π-α)=-,则cos(-2π-α)等于()A.B.±C.-D.±答案A解析依题意得-cosα=-,∴cosα=,从而cos(-2π-α)=cos(-α)=cosα=.6.已知α∈(0,π),cos(π+α)=,则sinα=()A.-B.C.-D.答案B解析依题意得-cosα=,cosα=-,sinα==,选B.7.sin2(2π-α)+cos(π+α)·cos(π-α)+1的值是()A.1B.2C.0D.2sin2α答案B解析原式=sin2α+(-cosα)·(-cosα)+1=sin2α+cos2α+1=1+1=2.8.计算sin2(π-α)-cos(π+α)cos(-α)+1的值是()A.1B.2C.0D.2sin2α答案B解析sin2(π-α)-cos(π+α)cos(-α)+1=sin2α+cos2α+1=2.9.如果角α、β满足α+β=π,那么下列式子中正确的个数是()①sinα=sinβ②sinα=-sinβ③cosα=cosβ④cosα=-cosβA.1B.2C.D.4答案B解析∵α+β=π,∴α=π-β,∴sinα=sin(π-β)=sinβ,故①正确;②不正确;cosα=cos(π-β)=-cosβ,故④正确,③不正确.10.计算sin2150°+sin2135°+2sin210°+cos2225°的值是()A.B.C.D.答案A解析原式=sin230°+sin245°-2sin30°+cos245°=+-1+=.11.给出下列各函数值:①sin(-1000°);②cos(-2200°);③tan(-10);④.其中符号为负的是()A.①B.②C.③D.④答案C解析sin(-1000°)=sin80°>0;cos(-2200°)=cos(-40°)=cos40°>0;tan(-10)=tan(3π-10)<0;=,sin>0,tan<0.∴原式>0.12.代数式化简结果是()A.sin2+cos2B.±(sin2-cos2)C.sin2-cos2D.cos2-sin2答案C解析2弧度角为钝角,又因为原式===|sin2-cos2|=sin2-cos2.13.(高考真题·课标全国卷)记cos(-80°)=k,那么tan100°=()A.B.-C.D.-答案B14.已知sin(45°+α)=,则sin(225°+α)=________.答案-解析sin(225°+α)=sin[(45°+α)+180°]=-sin(45°+α)=-.15.若tan(5π+α)=m,则的值为________.答案解析由tan(5π+α)=m,得tanα=m.于是原式===.16.已知cos(+θ)=,则cos(-θ)=________.答案-解析∵-θ++θ=π,∴-θ=π-(+θ),∴cos(-θ)=cos[π-(+θ)]=-cos(+θ)=-.►重点班·选做题17.已知sin(α+π)=,且sinαcosα<0,求的值.解析∵sin(α+π)=,∴sinα=-,又∵sinαcosα<0,∴cosα>0,cosα==,∴tanα=-.∴原式===-.1.(2016·四川)sin750°=________.答案解析sin750°=sin(2×360°+30°)=sin30°=.2.已知sin(3π+θ)=lg,求值:+.答案18解析由已知可得sinθ=.原式=+=+===18.