数学的方程思想在解决数学问题时,有一种从未知转化为已知的手段就是通过设元,寻找已知与未知之间的等量关系,构造方程或方程组,然后求解方程完成未知向已知的转化,这种解决问题的思想称为方程思想。【范例讲析】:例1:已知:如图,正方形ABCD的边长为a,△PQA是其内接等边三角形。求:PB的长。例2:如图,在△ABC中,∠B=30°,∠ACB=120°,D是BC上一点,且∠ADC=45°,若CD=8,求BD的长。【闯关夺冠】1:如图,EB是直径,O是圆心,CB、CD切半圆于B、D、CD交BE延长线于A点,若BC=6,AD=2AE,求半圆的面积。2.如图,某农场要用总长24m的木栏建一个长方形的养鸡场,鸡场的一边靠墙(墙长12m),且中间隔有一道木栏,设鸡场的宽AB为xm,面积为Sm2;(1)求S关于x的函数关系式;(2)若鸡场的面积为45m2,试求出鸡场的宽AB的长;(3)鸡场的面积能否达到50m2?若能,请给出设计方案;若不能,请说明理由.ABCDPQABCD