老城中学2014春期末模拟考试八年级数学试题一、选择题。(每小题3分,共30分)1、若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>2、下列二次根式中不能再化简的二次根式的是()A.B.C.D.3、以下列各组数为边的三角形中,是直角三角形的有()(1)3,4,5;(2),,;(3)32,42,52;(4)0.03,0.04,0.05.A.1个B.2个C.3个D.4个4、与直线y=2x+1关于x轴对称的直线是()A.y=-2x+1B.y=-2x-1C、D、5、如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.第5题图第7题图第8题图6、对于函数y=5﹣x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A、0B、1C、2D、37、如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8、八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A、B、C、D、9、如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.110、小明、小宇从学校出发到青少年宫参加书法比赛,小明步行一段时间后,小宇骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小明出发时间t(分)之间的函数关系如图所示.下列说法:①小宇先到达青少年宫;②小宇的速度是小明速度的3倍;③a=20;④b=600.其中正确的是()A.①②③B.①②④C.①③④D.①②③④第10题图第9题图二、写出你的结论,完美填空!(每小题3分,共24分)11、对于正比例函数,的值随的值减小而减小,则的值为。12、从A地向B地打长途电话,通话3分钟以内(含3分钟)收费2.4元,3分钟后每增加通话时间1分钟加收1元(不足1分钟的通话时间按1分钟计费),某人如果有12元话费打一次电话最多可以通话分钟.|m第17题图第18题图13、写出一条经过第一、二、四象限的直线解析式为。14、当5个整数从小到大排列后,其中位数为4,如果这组数据的唯一众数是6,那么这5个数的和的最大值是。15、如图,四边形ABCD的对角线AC,BD交于点O,有下列条件:①AO=CO,BO=DO;②AO=BO=CO=DO.其中能判断ABCD是矩形的条件是(填序号)16、已知的值是.17、没有上盖的圆柱盒高为10cm,周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为___________-cm18、已知在平面直角坐标系中,点O为坐标原点,过O的直线OM经过点A(6,6),过A作正方形ABCD,在直线OA上有一点E,过E作正方形EFGH,已知直线OC经过点G,且正方形ABCD的边长为2,正方形EFGH的边长为3,则点F的坐标为.三、解答题。19、(6分)计算:20、(8分)如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的解析式.21、(8分)某中学对“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为,又知此次调查中捐15元和20元得人数共39人.(1)他们一共抽查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1500名学生,请估算全校学生共捐款多少元?22、(8分)如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.23、(12分)现场学习:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的...