第二讲数列的通项公式与数列求和研热点(聚焦突破)类型一数列的通项问题1.累加法求通项:形如an+1-an=f(n).2.累乘法求通项:形如=f(n).3.构造法:形如:an+1=pan+q.4.已知Sn求an,即an=[例1](2012年高考广东卷)设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式.[解析](1)当n=1时,T1=2S1-12.因为T1=S1=a1,所以a1=2a1-1,解得a1=1.(2)当n≥2时,Sn=Tn-Tn-1=2Sn-n2-[2Sn-1-(n-1)2]=2Sn-2Sn-1-2n+1,所以Sn=2Sn-1+2n-1,①所以Sn+1=2Sn+2n+1,②②-①得an+1=2an+2.所以an+1+2=2(an+2),即=2(n≥2).当n=1时,a1+2=3,a2+2=6,则=2,所以当n=1时也满足上式.所以{an+2}是以3为首项,2为公比的等比数列,所以an+2=3·2n-1,所以an=3·2n-1-2.跟踪训练数列{an}中,a1=1,对所有的n≥2,都有a1·a2·a3·…·an=n2,数列{an}的通项公式为________.解析:由题意,当n≥2时,a1·a2·a3·…·an=n2,①故当n=2时,有a1·a2=22=4,又因为a1=1,所以a2=4.故当n≥3时,有a1·a2·a3·…·an-1=(n-1)2,②由,得an=.而当n=1时,a1=1,不满足上式,n=2时,满足上式.所以数列{an}的通项公式为an=1答案:类型二数列求和数列求和的方法技巧(1)转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并;(2)错位相减法这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列;(3)裂项相消法利用通项变形,将通项分裂成两项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.[例2](2012年高考浙江卷)已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.(1)求an,bn;(2)求数列{an·bn}的前n项和Tn.[解析](1)由Sn=2n2+n,得当n=1时,a1=S1=3;当n≥2时,an=Sn-Sn-1=4n-1.所以an=4n-1,n∈N*.由4n-1=an=4log2bn+3,得bn=2n-1,n∈N*.(2)由(1)知anbn=(4n-1)·2n-1,n∈N*,所以Tn=3+7×2+11×22+…+(4n-1)·2n-1,2Tn=3×2+7×22+…+(4n-5)·2n-1+(4n-1)·2n,所以2Tn-Tn=(4n-1)2n-[3+4(2+22+…+2n-1)]=(4n-5)2n+5.故Tn=(4n-5)2n+5,n∈N*.2跟踪训练(2012年高考课标全国卷)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为()A.3690B.3660C.1845D.1830解析:利用数列的递推式的意义结合等差数列求和公式求解. an+1+(-1)nan=2n-1,∴a2=1+a1,a3=2-a1,a4=7-a1,a5=a1,a6=9+a1,a7=2-a1,a8=15-a1,a9=a1,a10=17+a1,a11=2-a1,a12=23-a1,…,a57=a1,a58=113+a1,a59=2-a1,a60=119-a1,∴a1+a2+…+a60=(a1+a2+a3+a4)+(a5+a6+a7+a8)+…+(a57+a58+a59+a60)=10+26+42+…+234==1830.答案:D类型三数列的综合应用1.数列的综合应用多涉及函数、不等式、解析几何等知识.2.数列的单调性的判断方法:(1)作差:an+1-an与0的关系;(2)作商:与1的关系.[例3](2012年高考广东卷)设数列{an}的前n项和为Sn,满足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+<.[解析](1) a1,a2+5,a3成等差数列,∴2(a2+5)=a1+a3.3又2Sn=an+1-2n+1+1,∴2S1=a2-22+1,2S2=a3-23+1,∴2a1=a2-3,2(a1+a2)=a3-7.由得∴a1=1.(2) 2Sn=an+1-2n+1+1,①∴当n≥2时,2Sn-1=an-2n+1.②①-②得2an=an+1-an-2n+1+2n,∴an+1=3an+2n.两边同除以2n+1得=·+,∴+1=(+1).又由(1)知+1=(+1),∴数列{+1}是以为首项,为公比的等比数列,∴+1=·()n-1=()n,∴an=3n-2n,即数列{an}的通项公式为an=3n-2n.(3)证明: an=3n-2n=(1+2)n-2n=C·1n·20+C·1n-1·21+C·1n-2·22+…+C·10...