专题跟踪训练(十九)数列的通项与求和一、选择题1.(2018·安徽淮南一模)已知{an}中,an=n2+λn,且{an}是递增数列,则实数λ的取值范围是()A.(-2,+∞)B.[-2,+∞)C.(-3,+∞)D.[-3,+∞)[解析] {an}是递增数列,∴∀n∈N*,an+1>an,∴(n+1)2+λ(n+1)>n2+λn,化简得λ>-(2n+1),∴λ>-3.故选C.[答案]C2.(2018·信阳二模)已知数列{an}中,a1=a2=1,an+2=则数列{an}的前20项和为()A.1121B.1122C.1123D.1124[解析]由题意可知,数列{a2n}是首项为1,公比为2的等比数列,数列{a2n-1}是首项为1,公差为2的等差数列,故数列{an}的前20项和为+10×1+×2=1123.选C.[答案]C3.(2018·石家庄一模)已知正项数列{an}中,a1=1,且(n+2)a-(n+1)a+anan+1=0,则它的通项公式为()A.an=B.an=C.an=D.an=n[解析]因为(n+2)a-(n+1)a+anan+1=0,所以[(n+2)an+1-(n+1)an]·(an+1+an)=0.又{an}为正项数列,所以(n+2)an+1-(n+1)an=0,即=,则当n≥2时,an=··…··a1=··…··1=.又 a1=1也适合,∴an=,故选B.[答案]B4.(2018·广东茂名二模)Sn是数列{an}的前n项和,且∀n∈N*都有2Sn=3an+4,则Sn=()A.2-2×3nB.4×3nC.-4×3n-1D.-2-2×3n-1[解析] 2Sn=3an+4,∴2Sn=3(Sn-Sn-1)+4(n≥2),变形为Sn-2=3(Sn-1-2),又n=1时,2S1=3S1+4,解得S1=-4,∴S1-2=-6.∴数列{Sn-2}是等比数列,首项为-6,公比为3.∴Sn-2=-6×3n-1,可得Sn=2-2×3n.故选A.[答案]A5.(2018·河北石家庄一模)若数列{an}满足a1=2,an+1=,则a2018的值为()A.2B.-3C.-D.[解析] a1=2,an+1=,∴a2==-3,同理可得:a3=-,a4=,a5=2,…,可得an+4=an,则a2018=a504×4+2=a2=-3.故选B.[答案]B6.数列{an}满足a1=2,an+1=a(an>0,n∈N*),则an=()A.10n-2B.10n-1C.102n-1D.22n-1[解析]因为数列{an}满足a1=2,an+1=a(an>0,n∈N*),所以log2an+1=2log2an,即=2.又a1=2,所以log2a1=log22=1.故数列{log2an}是首项为1,公比为2的等比数列.所以log2an=2n-1,即an=22n-1.[答案]D二、填空题7.(2018·河南新乡三模)若数列{an+1-an}是等比数列,且a1=1,a2=2,a3=5,则an=________.[解析] a2-a1=1,a3-a2=3,∴q=3,∴an+1-an=3n-1,∴当n≥2时,an-a1=a2-a1+a3-a2+…+an-1-an-2+an-an-1=1+3+…+3n-2=, a1=1,∴an=.a1=1也适合,∴an=.[答案]8.已知数列{an}中,a1=3,且点Pn(an,an+1)(n∈N*)在直线4x-y+1=0上,则数列{an}的通项公式为________.[解析]因为点Pn(an,an+1)(n∈N*)在直线4x-y+1=0上,所以4an-an+1+1=0.所以an+1+=4.因为a1=3,所以a1+=.故数列是首项为,公比为4的等比数列.所以an+=×4n-1,故数列{an}的通项公式为an=×4n-1-.[答案]an=×4n-1-9.(2018·山西大同模拟)已知数列{an}的通项公式为an=(-1)n(2n-1)·cos+1(n∈N*),其前n项和为Sn,则S60=________.[解析]由题意可得,当n=4k-3(k∈N*)时,an=a4k-3=1;当n=4k-2(k∈N*)时,an=a4k-2=6-8k;当n=4k-1(k∈N*)时,an=a4k-1=1;当n=4k(k∈N*)时,an=a4k=8k.∴a4k-3+a4k-2+a4k-1+a4k=8,∴S60=8×15=120.[答案]120三、解答题10.(2018·郑州质检)已知数列{an}的首项a1=1,前n项和Sn,且数列是公差为2的等差数列.(1)求数列{an}的通项公式;(2)若bn=(-1)nan,求数列{bn}的前n项和Tn.[解](1)由已知条件得=1+(n-1)×2=2n-1,∴Sn=2n2-n.当n≥2时,an=Sn-Sn-1=2n2-n-[2(n-1)2-(n-1)]=4n-3.当n=1时,a1=S1=1,而4×1-3=1,∴an=4n-3.(2)由(1)可得bn=(-1)nan=(-1)n(4n-3),当n为偶数时,Tn=-1+5-9+13-17+…+(4n-3)=4×=2n,当n为奇数时,n+1为偶数,Tn=Tn+1-bn+1=2(n+1)-(4n+1)=-2n+1.综上,Tn=11.(2018·南昌市二模)已知数列{an}满足+++…+=n2+n.(1)求数列{an}的通项公式;(2)若bn=,求数列{bn}的前n项和Sn.[解](1)+++…+=n2...