板块命题点专练(四)导数及其应用(研近年高考真题——找知识联系,找命题规律,找自身差距)命题点一导数的运算及几何意义命题指数:☆☆☆☆☆难度:中、低题型:选择题、填空题、解答题1.(2014·大纲卷)曲线y=xex-1在点(1,1)处切线的斜率等于()A.2eB.eC.2D.12.(2014·新课标全国卷Ⅱ)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.33.(2013·江西高考)设函数f(x)在(0,+∞)内可导,且f(ex)=x+ex,则f′(1)=________.4.(2014·江苏高考)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是________.1.(2012·辽宁高考)函数y=x2-lnx的单调递减区间为()A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)2.(2014·新课标全国卷Ⅱ)若函数f(x)=kx-lnx在区间(1,+∞)单调递增,则k的取值范围是()A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)3.(2013·浙江高考)已知e为自然对数的底数,设函数f(x)=(ex-1)(x-1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值4.(2014·江西高考)在同一直角坐标系中,函数y=ax2-x+与y=a2x3-2ax2+x+a(a∈R)的图象不可能的是()5.(2014·陕西高考)设函数f(x)=lnx+,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)=f′(x)-零点的个数;(3)若对任意b>a>0,<1恒成立,求m的取值范围.6.(2014·北京高考)已知函数f(x)=xcosx-sinx,x∈.(1)求证:f(x)≤0;(2)若a<0),若f(x)在[-1,1]上的最小值记为g(a).(1)求g(a);(2)证明:当x∈[-1,1]时,恒有f(x)≤g(a)+4.答案命题点一1.选C由题意可得y′=ex-1+xex-1,所以曲线在点(1,1)处切线的斜率等于2,故选C.2.选Dy′=a-,由题意得y′|x=0=2,即a-1=2,所以a=3.3.解析:因为f(ex)=x+ex,所以f(x)=x+lnx(x>0),所以f′(x)=1+,所以f′(1)=2.答案:24.解析:y=ax2+的导数为y′=2ax-,直线7x+2y+3=0的斜率为-.由题意得解得则a+b=-3.答案:-3命题点二1.选B函数y=x2-lnx的定义域为(0,+∞),y′=x-=,令y′≤0,则可得01时,f′(x)=k-≥0恒成立,即k≥在区间(1,+∞)上恒成立.因为x>1,所以0<<1,所以k≥1.故选D.3.选C当k=1时,f(x)=(ex-1)(x-1),0,1是函数f(x)的零点.当01时,f(x)=(ex-1)(x-1)>0,1不会是极值点.当k=2时,f(x)=(ex-1)(x-1)2,零点还是0,1,但是当01时,f(x)>0,由极值的概念,故选C.4.选B分两种情况讨论:当a=0时,函数为y=-x与y=x,图象为D,故D有可能;当a≠0时,函数y=ax2-x+的对称轴为x=,对函数y=a2x3-2ax2+x+a求导得y′=3a2x2-4ax+1=(3ax-1)(ax-1),令y′=0,则x1=,x2=,所以对称轴x=介于两个极值点x1=,x2=之间,A,C满足,B不满足,所以B不可能.故选B.5.解:(1)由题设,当m=e时,f(x)=lnx+,则f′(x)=,∴当x∈(0,e),f′(x)<0,f(x)在(0,e)上单调递减,当x∈(e,+∞),f′(x)>0,f(x)在(e,+∞)上单调递增,∴x=e时,f(x)取得极小值f(e)=lne+=2,∴f(x)的极小值为2.(2)由题设g(x)=f′(x)-=--(x>0),令g(x)=0,得m=-x3+x(x>0).设φ(x)=-x3+x(x≥0),则φ′(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=.又φ(0)=0,结合y=φ(x)的图象(如图),可知①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数...