4.1.1圆的标准方程课后训练案巩固提升1.圆(x-2)2+(y+3)2=2的圆心和半径分别为()A.(-2,3),1B.(2,-3),3C.(-2,3),D.(2,-3),答案:D2.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)()A.是圆心B.在圆上C.在圆内D.在圆外解析:∵(3-2)2+(2-3)2=2<4,∴点P在圆内.答案:C3.函数y=的图象是()A.一条射线B.一个圆C.两条射线D.半圆弧解析:y=可化为x2+y2=9(y≥0),所以y=的图象是半圆弧.答案:D4.已知一圆的圆心为点A(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的方程是()A.(x-2)2+(y+3)2=13B.(x+2)2+(y-3)2=13C.(x-2)2+(y+3)2=52D.(x+2)2+(y-3)2=52解析:设该直径的两个端点分别为P(a,0),Q(0,b),则A(2,-3)是线段PQ的中点,故P(4,0),Q(0,-6),圆的半径r=|PA|=.所以圆的方程为(x-2)2+(y+3)2=13.答案:A5.若P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=0解析:由题意知圆心为C(1,0).由圆的几何性质,得AB⊥CP,kCP=-1,∴kAB=1.∴直线AB的方程为y+1=x-2,即x-y-3=0.答案:A6.已知圆O:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆C挡住,则实数a的取值范围是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.D.(-∞,-4)∪(4,+∞)解析:(法一)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A,B两点的直线方程为y=x+,即ax-4y+2a=0,令d==1,化简后,得3a2=16,解得a=±.再进一步判断便可得到正确答案为C.(法二)(数形结合法)如图,在Rt△AOC中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt△BAD中,由|AD|=4,∠BAD=30°,可求得BD=,再由图直观判断,故选C.答案:C7.与圆(x-2)2+(y+3)2=16同心,且过点P(-1,1)的圆的方程是.解析:由已知得,所求圆的圆心为(2,-3).又该圆过点P(-1,1),则所求圆的半径r==5.所以,所求圆的方程为(x-2)2+(y+3)2=25.答案:(x-2)2+(y+3)2=258.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为.解析:设圆心(0,b),圆的方程为(x-0)2+(y-b)2=1,把(1,2)代入,得12+(2-b)2=1,∴b=2.∴圆的方程为x2+(y-2)2=1.答案:x2+(y-2)2=19.导学号96640107已知点A(8,-6)与圆C:x2+y2=25,P是圆C上任意一点,则|AP|的最小值是.解析:由于82+(-6)2=100>25,故点A在圆外,从而|AP|的最小值为-5=10-5=5.答案:510.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程是.解析:将直线方程整理为(x+1)a-(x+y-1)=0,可知直线恒过点(-1,2),从而所求圆的方程为(x+1)2+(y-2)2=5.答案:(x+1)2+(y-2)2=511.已知圆C的标准方程为(x-5)2+(y-6)2=a2(a>0).(1)若点M(6,9)在圆上,求半径a;(2)若点P(3,3)与Q(5,3)有一点在圆内,另一点在圆外,求a的取值范围.解:(1)∵点M(6,9)在圆上,∴(6-5)2+(9-6)2=a2,即a2=10.又a>0,∴a=.(2)∵|PC|=,|QC|==3,|PC|>|QC|,故点P在圆外,点Q在圆内,∴3
2a2,即2a+5>0,解得a>-.故a的取值范围是.13.导学号96640108若圆C经过坐标原点,且圆心在直线y=-2x+3上运动,求当半径最小时圆的方程.解法一:设圆心坐标为(a,-2a+3),则圆的半径r==.当a=时,rmin=.故所求圆的方程为.解法二:易知,圆的半径的最小值就是原点O到直线y=-2x+3的距离.如图,此时r=.设圆心为(a,-2a+3),则,解得a=,从而圆心坐标为.故所求圆的方程为.