电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

D7_6高阶线性微分方程VIP免费

D7_6高阶线性微分方程_第1页
1/24
D7_6高阶线性微分方程_第2页
2/24
D7_6高阶线性微分方程_第3页
3/24
目录上页下页返回结束高阶线性微分方程第六节二、线性齐次方程解的结构三、线性非齐次方程解的结构*四、常数变易法一、二阶线性微分方程举例第七章目录上页下页返回结束一、二阶线性微分方程举例当重力与弹性力抵消时,物体处于平衡状态,例1.质量为m的物体自由悬挂在一端固定的弹簧上,力作用下作往复运动,xxO解:阻力的大小与运动速度下拉物体使它离开平衡位置后放开,若用手向物体在弹性力与阻取平衡时物体的位置为坐标原点,建立坐标系如图.设时刻t物位移为x(t).(1)自由振动情况.弹性恢复力物体所受的力有:(虎克定律)成正比,方向相反.建立位移满足的微分方程.目录上页下页返回结束据牛顿第二定律得,2mck,2mn令则得有阻尼自由振动方程:0dd2dd222xktxntx阻力(2)强迫振动情况.若物体在运动过程中还受铅直外力作用,tpHFsin,令mHh则得强迫振动方程:tphxktxntxsindd2dd222目录上页下页返回结束求电容器两两极板间电压0ddiRCqtiLE例2.联组成的电路,其中R,L,C为常数,所满足的微分方程.cu解:设电路中电流为i(t),的电量为q(t),自感电动势为,LE由电学知根据回路电压定律:设有一个电阻R,自感L,电容C和电源E串极板上在闭合回路中,所有支路上的电压降为0‖q~LERQCqi目录上页下页返回结束0ddiRCqtiLELCLR1,20令tLCEututumCCCsindd2dd2022串联电路的振荡方程:22ddtuCLCtuCRCddCutEmsin化为关于cu的方程:故有‖q~LERQCqi如果电容器充电后撤去电源(E=0),则得0dd2dd2022CCCututu目录上页下页返回结束n阶线性微分方程的一般形式为方程的共性(二阶线性微分方程)例1例2()()()yPxyQxyfx—可归结为同一形式:)()()()(1)1(1)(xfyxayxayxaynnnn时,称为非齐次方程;0)(xf时,称为齐次方程.复习:一阶线性方程)()(xQyxPy通解:xxQxxPxxPde)(ed)(d)(xxPCyd)(e非齐次方程特解齐次方程通解Yy0)(xf目录上页下页返回结束])[(11yCxP][)(11yCxQ0证毕二、线性齐次方程解的结构)(),(21xyxy若函数是二阶线性齐次方程0)()(yxQyxPy的两个解,也是该方程的解.证:)()(2211xyCxyCy将代入方程左边,得][11yC22yC22yC22yC])()([1111yxQyxPyC])()([2222yxQyxPyC(叠加原理))()(2211xyCxyCy则定理1.目录上页下页返回结束说明:不一定是所给二阶方程的通解.例如,是某二阶齐次方程的解,也是齐次方程的解并不是通解但是)()(2211xyCxyCy则为解决通解的判别问题,下面引入函数的线性相关与线性无关概念.目录上页下页返回结束定义:)(,),(),(21xyxyxyn设是定义在区间I上的n个函数,使得则称这n个函数在I上线性相关,否则称为线性无关.例如,在(,)上都有故它们在任何区间I上都线性相关;又如,若在某区间I上则根据二次多项式至多只有两个零点,必需全为0,可见在任何区间I上都线性无关.若存在不全为0的常数目录上页下页返回结束两个函数在区间I上线性相关与线性无关的充要条件:线性相关存在不全为0的使1221)()(kkxyxy(无妨设)01k线性无关)()(21xyxy常数思考:中有一个恒为0,则必线性相关(证明略)线性无关目录上页下页返回结束定理2.是二阶线性齐次方程的两个线性无关特解,)()(2211xyCxyCy数)是该方程的通解.例如,方程有特解且常数,故方程的通解为(自证)推论.是n阶齐次方程的n个线性无关解,则方程的通解为)(11为任意常数knnCyCyCyxytan21y则目录上页下页返回结束三、线性非齐次方程解的结构)(*xy设是二阶非齐次方程的一个特解,)(*)(xyxYyY(x)是相应齐次方程的通解,定理3.则是非齐次方程的通解.证:将)(*)(xyxYy代入方程①左端,得)*(yY)*()(yYxP))()((YxQYxPY)(0)(xfxf)*()(yYxQ②①目录上页下页返回结束)(*)(xyxYy故是非齐次方程的解,又Y中含有两个独立任意常数,例如,方程有特解xCxCYsincos21对应齐次方程有通解因此该方程的通解为证毕因而②也是通解.目录上页下页返回结束定理4.分别是方程的特解,是方程),,2,1()()()(mkxfyxQyxPyk...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

D7_6高阶线性微分方程

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部