电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学正余弦定理VIP免费

高中数学正余弦定理_第1页
1/13
高中数学正余弦定理_第2页
2/13
高中数学正余弦定理_第3页
3/13
正弦定理和余弦定理一:基础知识理解1.正弦定理分类内容定理asinA=bsinB=csinC=2R(R是△ABC外接圆的半径)变形公式①a=2Rsin_A,b=2Rsin_B,c=2Rsin_C,②sinA∶sinB∶sinC=a∶b∶c,③sinA=a2R,sinB=b2R,sinC=c2R解决的问题①已知两角和任一边,求其他两边和另一角,②已知两边和其中一边的对角,求另一边的对角2.余弦定理分类内容定理在△ABC中,有a2=b2+c2-2bccos_A;b2=a2+c2-2accos_B;c2=a2+b2-2abcos_C变形公式cosA=b2+c2-a22bc;cosB=a2+c2-b22ac;cosC=a2+b2-c22ab解决的问题①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角3.三角形中常用的面积公式(1)S=12ah(h表示边a上的高);(2)S=12bcsinA=12acsinB=12absinC;(3)S=12r(a+b+c)(r为三角形的内切圆半径).二:基础知识应用演练1.(2012·广东高考)在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=()A.43B.232.在△ABC中,a=3,b=1,c=2,则A等于()A.30°B.45°C.60°D.75°3.(教材习题改编)在△ABC中,若a=18,b=24,A=45°,则此三角形有()A.无解B.两解C.一解D.解的个数不确定4.(2012·陕西高考)在△ABC中,角A,B,C所对边的长分别为a,b,c.若a=2,B=π6,c=23,则b=________.5.△ABC中,B=120°,AC=7,AB=5,则△ABC的面积为________.解析:1选B由正弦定理得:BCsinA=ACsinB,即32sin60°=ACsin45°,所以AC=3232×22=23.2选C cosA=b2+c2-a22bc=1+4-32×1×2=12,又 0°B?a>b?sinA>sinB.(2)在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式a=bsinAbsinAb解的个一解两解一解一解数三、典型题型精讲(1)利用正弦、余弦定理解三角形[例1](2012·浙江高考)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=3acosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,求a,c的值.解析:(1)由bsinA=3acosB及正弦定理asinA=bsinB,得sinB=3cosB,所以tanB=3,所以B=π3.(2)由sinC=2sinA及asinA=csinC,得c=2a.由b=3及余弦定理b2=a2+c2-2accosB,得9=a2+c2-ac.所以a=3,c=23.思考一下:在本例(2)的条件下,试求角A的大小.方法小结:1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.试题变式演练1.△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=2a.(1)求ba;(2)若c2=b2+3a2,求B.解:(1)由正弦定理得,sin2AsinB+sinBcos2A=2sinA,即sinB(sin2A+cos2A)=2sinA.故sinB=2sinA,所以ba=2.(2)由余弦定理和c2=b2+3a2,得cosB=1+3a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=12,又cosB>0,故cosB=22,所以B=45°.(2)利用正弦、余弦定理判定三角形的形状[例2]在△ABC中a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(1)求A的大小;(2)若sinB+sinC=1,试判断△ABC的形状.[解析](1)由已知,根据正弦定理得2a2=(2b+c)·b+(2c+b)c,即a2=b2+c2+bc.由余弦定理得a2=b2+c2-2bccosA,故cosA=-12, 0

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学正余弦定理

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群