电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高二数学:122基本初等函数的导数公式及导数运算法则1同步练习(人教A版选修2-2)【含解析】VIP免费

高二数学:122基本初等函数的导数公式及导数运算法则1同步练习(人教A版选修2-2)【含解析】_第1页
1/5
高二数学:122基本初等函数的导数公式及导数运算法则1同步练习(人教A版选修2-2)【含解析】_第2页
2/5
高二数学:122基本初等函数的导数公式及导数运算法则1同步练习(人教A版选修2-2)【含解析】_第3页
3/5
选修2-21.2.2第1课时基本初等函数的导数公式及导数运算法则一、选择题1.曲线y=x3-2在点处切线的倾斜角为()A.30°B.45°C.135°D.60°[答案]B[解析]y′|x=-1=1,∴倾斜角为45°.2.设f(x)=-,则f′(1)等于()A.-B.C.-D.[答案]B3.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为()A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0[答案]A[解析] 直线l的斜率为4,而y′=4x3,由y′=4得x=1而x=1时,y=x4=1,故直线l的方程为:y-1=4(x-1)即4x-y-3=0.4.已知f(x)=ax3+9x2+6x-7,若f′(-1)=4,则a的值等于()A.B.C.D.[答案]B[解析] f′(x)=3ax2+18x+6,∴由f′(-1)=4得,3a-18+6=4,即a=.∴选B.5.已知物体的运动方程是s=t4-4t3+16t2(t表示时间,s表示位移),则瞬时速度为0的时刻是()A.0秒、2秒或4秒B.0秒、2秒或16秒C.2秒、8秒或16秒D.0秒、4秒或8秒[答案]D第1页(共5页)[解析]显然瞬时速度v=s′=t3-12t2+32t=t(t2-12t+32),令v=0可得t=0,4,8.故选D.6.(2010·新课标全国卷文,4)曲线y=x3-2x+1在点(1,0)处的切线方程为()A.y=x-1B.y=-x-1C.y=2x-2D.y=-2x-2[答案]A[解析]本题考查了导数的几何意义,切线方程的求法,在解题时应首先验证点是否在曲线上,然后通过求导得出切线的斜率,题目定位于简单题.由题可知,点(1,0)在曲线y=x3-2x+1上,求导可得y′=3x2-2,所以在点(1,0)处的切线的斜率k=1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y=x3-2x+1的切线方程为y=x-1,故选A.7.若函数f(x)=exsinx,则此函数图象在点(4,f(4))处的切线的倾斜角为()A.B.0C.钝角D.锐角[答案]C[解析]y′|x=4=(exsinx+excosx)|x=4=e4(sin4+cos4)=e4sin(4+)<0,故倾斜角为钝角,选C.8.曲线y=xsinx在点处的切线与x轴、直线x=π所围成的三角形的面积为()A.B.π2C.2π2D.(2+π)2[答案]A[解析]曲线y=xsinx在点处的切线方程为y=-x,所围成的三角形的面积为.9.设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2011(x)等于()A.sinxB.-sinxC.cosxD.-cosx[答案]D[解析]f0(x)=sinx,f1(x)=f0′(x)=(sinx)′=cosx,f2(x)=f1′(x)=(cosx)′=-sinx,f3(x)=f2′(x)=(-sinx)′=-cosx,f4(x)=f3′(x)=(-cosx)′=sinx,∴4为最小正周期,∴f2011(x)=f3(x)=-cosx.故选D.10.f(x)与g(x)是定义在R上的两个可导函数,若f(x)、g(x)满足f′(x)=g′(x),则f(x)与g(x)满足()A.f(x)=g(x)B.f(x)-g(x)为常数C.f(x)=g(x)=0D.f(x)+g(x)为常数[答案]B第2页(共5页)[解析]令F(x)=f(x)-g(x),则F′(x)=f′(x)-g′(x)=0,∴F(x)为常数.二、填空题11.设f(x)=ax2-bsinx,且f′(0)=1,f′=,则a=________,b=________.[答案]0-1[解析]f′(x)=2ax-bcosx,由条件知,∴.12.设f(x)=x3-3x2-9x+1,则不等式f′(x)<0的解集为________.[答案](-1,3)[解析]f′(x)=3x2-6x-9,由f′(x)<0得3x2-6x-9<0,∴x2-2x-3<0,∴-1<x<3.13.曲线y=cosx在点P处的切线的斜率为______.[答案]-[解析] y′=(cosx)′=-sinx,∴切线斜率k=y′|x==-sin=-.14.已知函数f(x)=ax+bex图象上在点P(-1,2)处的切线与直线y=-3x平行,则函数f(x)的解析式是____________.[答案]f(x)=-x-ex+1[解析]由题意可知,f′(x)|x=-1=-3,∴a+be-1=-3,又f(-1)=2,∴-a+be-1=2,解之得a=-,b=-e,故f(x)=-x-ex+1.三、解答题15.求下列函数的导数:(1)y=x(x2++);(2)y=(+1)(-1);(3)y=sin4+cos4;(4)y=+.[解析](1) y=x=x3+1+,∴y′=3x2-;(3) y=sin4+cos4=2-2sin2cos2=1-sin2=1-·=+cosx,∴y′=-sinx;(4) y=+=+==-2,∴y′=′==.16.已知两条曲线y=sinx、y=cosx,是否存在这两条曲线的一个公共点,使在这一点处,第3页(共5页)两条曲线的切线互相垂直?并说明理由.[解析]由于y=sinx、y=cosx,设两条曲线的一个公共点为P(x0,y0),∴两条...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高二数学:122基本初等函数的导数公式及导数运算法则1同步练习(人教A版选修2-2)【含解析】

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部