随机事件的概率3.1.1问题提出1.日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗?明天上午第一节课一定是八点钟上课吗?等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确回答的.例如,你明天什么时间来到学校?明天中午12:10有多少人在学校食堂用餐?你购买的本期福利彩票是否能中奖?等等,这些问题的结果都具有偶然性和不确定性.2.从辨证的观点看问题,事情发生的偶然性与必然性之间往往存在有某种内在联系.例如,哈尔滨一年四季的变化有着确定的、必然的规律,但哈尔滨地区一年里哪一天最热,哪一天最冷,哪一天降雨量最大,那一天下第一场雪等,都是不确定的、偶然的.3.数学理论的建立,往往来自于解决实际问题的需要.对于事情发生的必然性与偶然性,及偶然性事情发生的可能性有多大,我们将从数学的角度进行分析与探究.思考1:考察下列事件:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)在标准大气压下水温升高到100°C会沸腾.这些事件就其发生与否有什么共同特点?思考2:我们把上述事件叫做必然事件,你指出必然事件的一般含义吗?知识探究(一):必然事件、不可能事件和随机事件问:你能列举一些必然事件的实例吗?思考2:考察下列事件:(1)在没有水分的真空中种子发芽;(2)在常温常压下钢铁融化;(3)服用一种药物使人永远年轻.这些事件就其发生与否有什么共同特点?在条件S下,一定会发生的事件,叫做相对于条件S的必然事件.我们把上述事件叫做不可能事件你指出不可能事件的一般含义吗?在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件问:你能列举一些不可能事件的实例吗?思考3:考察下列事件:(1)某人射击一次命中目标;(2)马林能夺取北京奥运会男子乒乓球单打冠军;(3)抛掷一个骰字出现的点数为偶数.这些事件就其发生与否有什么共同特点?我们把上述事件叫做随机事件。你指出随机事件的一般含义吗?在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件.问:你能列举一些随机事件的实例吗?确定事件:必然事件和不可能事件统称为确定事件,确定事件和随机事件统称为事件,一般用大写字母A,B,C,…表示.对于事件A,能否通过改变条件,使事件A在这个条件下是确定事件,在另一条件下是随机事件?你能举例说明吗?物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映.知识探究(二):事件A发生的频率与概率思考1:在相同的条件S下重复n次试验,若某一事件A出现的次数为nA,则称nA为事件A出现的频数,那么事件A出现的频率fn(A)等于什么?频率的取值范围是什么?nnAfAn)(]1,0[)(Afn思考2:历史上曾有人作过抛掷硬币的大量重复试验,结果如下表所示:在上述抛掷硬币的试验中,正面向上发生的频率的稳定值为多少?抛掷次数正面向上次数频率20484040120002400030000720881061204860191201214984361240.51810.50690.50160.50050.49960.50110.5思考3:某农科所对某种油菜籽在相同条件下的发芽情况进行了大量重复试验,结果如下表所示:在上述油菜籽发芽的试验中,每批油菜籽发芽的频率的稳定值为多少?每批粒数251070130310700150020003000发芽的粒数24960116282639133918062715发芽的频率10.80.90.8570.8920.9100.9130.8930.9030.9050.9思考4:上述试验表明,随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率呈现出一定的规律性,这个规律性是如何体现出来的?事件A发生的频率较稳定,在某个常数附近摆动.思考5:既然随机事件A在大量重复试验中发生的频率fn(A)趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件A发生的可能性的大小,并把这个常数叫做事件A发生的概率,记作P(A).那么在上述抛掷硬币的试验中,正面向上发生的概率是多少?在上述油菜籽发芽的试验中,油菜籽发芽的概率是多少?问1:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率...