2.4正态分布高二数学选修2-3引入连续型随机变量可能取某个区间上的任何值,所以通常感兴趣的是它落在某个区间的概率.离散型随机变量的概率分布规律用分布列描述,而连续型随机变量的概率分布规律用密度曲线描述.思考:连续型随机变量的概率分布规律又怎样研究呢?频率分布直方图教学情景96114128106899710311410910110610497931171081041139410887112109117102971131098910110510499101117108104979499103112988510689971031251091011061249710911710810410494108961068510689991061121031298996123851061029710311410910110611597931171081041121131089698851068997103114100:从学生中随机抽取出个人做测试,测试结果如下IQ第一步:求极差;129-85=44第二步:确定组数,组距;44/5=8.8第三步:将数据分9组;[85,90],(90,95],……,(125,130]区间号区间频数频率频率/组距1[85,90]20.020.0042(90,95]70.070.0143(95,100]110.110.0224(100,105]150.150.0305(105,110]250.250.0506(110,115]200.200.0407(115,120]120.120.0248(120,125]60.060.1209(125,130]20.020.004第四步:列出频率分布表第五步:画出频率分布直方图xy频率/组距08590951001051101151201251300.01-0.02-0.03-0.04-0.05-0.06-中间高,两头低,左右大致对称频率组距组距ab若数据无限增多且组距无限缩小,那么频率分布直方图的顶边缩小乃至形成一条光滑的曲线,我们称此曲线为概率密度曲线.总体在区间内取值的概率),(ba概率密度曲线概率密度曲线的形状特征.“中间高,两头低,左右对称”概率密度曲线14.2图.,,.,,.14.2?的某一球槽内最后掉入高尔顿板下方与层层小木块碰撞程中小球在下落过通道口落下上方的让一个小球从高尔顿板前面挡有一块玻璃隙作为通道空小木块之间留有适当的木块形小柱互平行但相互错开的圆排相在一块木板上钉上若干图板示意所示的就是一块高尔顿图你见过高尔顿板吗我们以球槽的编号为横坐标,以小球落入各个球槽的频率值为纵坐标,可以画出频率分布直方图123456球槽编号频率组距新课探究7891011试验思考:球槽数增加,重复次数增加,频率分布直方图怎么变化?频率组距随着重复次数的增加,球槽数增加直方图的形状会越来越像一条“钟形”曲线球槽编号新课探究这条曲线(就是或近似地是)下面函数的图象:22()21(),(,)2xxex其中实数和(0)为参数,()x的图象称为正态分布密度曲线,简称正态曲线.正态分布密度曲线定义:例1、下列函数是正态密度函数的是()A.B.C.D.22()21(),,(0)2xfxe都是实数222()2xfxe2(1)41()22xfxe221()2xfxeB若用X表示落下的小球第1次与高尔顿板底部接触时的坐标,则X是一个随机变量.X落在区间(a,b]的概率为:badxxbXaP)()(,xyo44.2图2.正态分布的定义:如果对于任何实数a