电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

《利用函数性质判定方程解的存在》教学设计VIP免费

《利用函数性质判定方程解的存在》教学设计_第1页
《利用函数性质判定方程解的存在》教学设计_第2页
《利用函数性质判定方程解的存在》教学设计_第3页
单元课题:函数与方程一、课标要求与教材分析这一节,是用函数来研究方程,具体研究的是方程的实数解,先是判断方程实数解的存在性,然后是求方程的近似解。方程f(x)=0的实数解就是函数f(x)的零点,解方程的过程(求方程的近似解)就是细化函数连续区间的过程。这样容易看出函数对方程的统领作用,使学生感受函数的核心地位。学生将通过本节学习,结合实际问题,感受运用函数概念简历模型的过程与方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系,并为今后进一步学习函数与不等式等知识奠定了坚实的基础.二、学情分析高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位.例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成了本节内容必须承载的任务.通过本节学习要让学生意识到“数学可以解决实际问题”并且也认识到“自己的数学知识还有待进一步提高”。三、教学目标1.知识与技能目标:(1)正确认识函数与方程的关系,求方程f(x)=0的实数解就是函数f(x)的零点,体会函数知识的核心作用。(2)能够利用函数的性质判定方程解得存在性(3)能够用二分法求方程的近似解,认识求方程近似解方法的意义。2.过程与方法目标:在近似计算的学习中感受近似,逼近和算法等数学思想的含义和作用。3.情感、态度和价值观目标:通过本节的学习,进一步拓展学生的视野,使他们体会数学不同内容之间是存在一定联系的。第1页共7页课时课题:利用函数性质判定方程解的存在一、教学目标:(1)知识与技能目标了解函数零点的概念;理解函数零点与方程的根之间的关系;掌握判断函数零点存在的方法;(2)过程与方法目标培养学生独立思考,自主观察和探究的能力;树立数形结合,函数与方程相结合的思想;(3)情感态度与价值观目标培养学生用联系的观点看待问题;感悟由具体到抽象、由特殊到一般地研究方法,形成严谨的科学态度。二、教学重点:函数零点与方程根之间的联系及零点存在的判定定理三、教学难点:探究发现零点存在条件,准确理解零点存在性定理四、教学方法与手段:实例引入、探究新知、实践探索、总结提炼、总结、反思。五、使用教材的构想:倡导积极主动,勇于探索的学习方式,运用数形结合、教师引导——学生探索相结合的教学方法,学生亲身经历、感受来获取知识,培养学生观察、发现、抽象与概括、运算求解等思维过程。六、教学流程(一)设置情景,导入新课1、实例引入解方程:(1)2-x=4;(2)2-x=x.设计意图:通过纯粹靠代数运算无法解决的方程,引起学生认知冲突,激起探求知的热情.2、一元二次方程的根与二次函数图象之间的关系.填空:方程x2-2x-3=0x2-2x+1=0x2-2x+3=0根x1=-1,x2=3x1=x2=1无实数根函数y=x2-2x-3y=x2-2x+1y=x2-2x+3图象图象与x轴的交点两个交点:(-1,0),(3,0)一个交点:(1,0)没有交点第2页共7页42-2-43-112Oxy42-2-43-112Oxy42-23-112Oxy问题1:从该表你可以得出什么结论?归纳:判别式ΔΔ>0Δ=0Δ<0方程ax2+bx+c=0(a>0)的根两个不相等的实数根x1、x2有两个相等的实数根x1=x2没有实数根函数y=ax2+bx+c(a>0)的图象函数的图象与x轴的交点两个交点:(x1,0),(x2,0)一个交点:(x1,0)无交点问题2:一元二次方程的根与相应的二次函数的图象之间有怎样的关系?学生讨论,得出结论:一元二次方程的根就是函数图象与x轴交点的横坐标.设计意图:通过回顾二次函数图象与x轴的交点和相应方程的根的关系,为一般函数的图像及相应方程的根的关系作准备.3、一般函数的图象与方程根的关系.问题3:其他的函数与方程之间也有类似的关系吗?请举例!师生互动,在学生提议的基础上,老师加以改善,现场在课件上展示类似如下函数的图象:y=2x-4,y=2x-8,y=ln(x-2),y=(x-1)(x+2)(x-3).比较函数图象与x轴的交点和相应方程的根的关系,从而得出一般的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

黄金书屋+ 关注
实名认证
内容提供者

爱好英语教学和互联网行业,热爱教育事业,兢兢业业

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部