分类加法计数原理与分步乘法计数原理A级基础巩固练1.若三角形的三边均为正整数,其中一边长为4,另外两边长分别为b、c,且满足b≤4≤c,则这样的三角形有()A.10个B.14个C.15个D.21个解析:当b=1时,c=4;当b=2时,c=4,5;当b=3时,c=4,5,6;当b=4时,c=4,5,6,7.故共有10个这样的三角形.答案:A2.25人排成5×5方阵,从中选出3人,要求其中任意2人既不同行也不同列,则不同的选法有()A.60种B.100种C.300种D.600种解析:5×5的方阵中,先从中任意取3行,有C=10(种)方法,再从中选出3人,其中任意2人既不同行也不同列的情况有CCC=60(种),故所选出的3人中任意2人既不同行也不同列的选法共有10×60=600(种).答案:D3.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279解析:0~9能组成的三位数的个数为9×10×10=900(个),能组成的无重复数字的三位数个数为9×9×8=648(个),故能组成的有重复数字的三位数的个数为900-648=252(个),故选B.答案:B4.高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有()1A.16种B.18种C.37种D.48种解析:三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37(种).答案:C5.将1,2,3,4,5,6,7,8,9这9个数字填在如图的9个空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为()34A.4B.6C.9D.12解析:如图所示,根据题意,1,2,9三个数字的位置是确定的,余下的数中,5只能在a.c位置,8只能在b,d位置,依(a,b,c,d)顺序,具体有(5,8,6,7),(5,6,7,8),(5,7,6,8),(6,7,5,8),(6,8,5,7),(7,8,5,6),合计6种.12a34bcd9答案:B6.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24个B.18个C.12个D.6个解析:当在0,2中选0时,可组成无重复数字的三位奇数A个;当在0,2中选2时,可组成无重复数字的三位奇数有2A个,所以共可组成无重复数字的三位奇数有A+2A=18(个),故选B.答案:B7.有A、B两种类型的车床各一台,现有甲、乙、丙三名工人,其中2甲、乙都会操作两种车床,丙只会操作A种车床,现从三名工人中选两名分别去操作以上车床,则不同的选派方法有__________种.解析:若选甲、乙两人,则有甲操作A车床,乙操作B车床或甲操作B车床,乙操作A车床,共有2种选派方法;若选甲、丙两人,则只有甲操作B车床,丙操作A车床这1种选派方法;若选乙、丙两人,则只有乙操作B车床,丙操作A车床这1种选派方法.∴共有2+1+1=4(种)不同的选派方法.答案:48.一排共9个座位,甲、乙、丙三人按如下方式入座:每人左右两旁都有空座位,且甲必须在乙、丙两人之间,则不同的坐法共有__________种(用数字作答).解析:从左到右9个位子中,甲只能坐4、5、6三个位子.当甲位于第5个位子时,乙、丙只能在2、3或7、8中的一个位子上;当甲位于第4个位子时,乙、丙肯定有一个位于2,另一个位于6、7、8中的一个位子上;当甲位于第6个位子时,乙、丙肯定有一个位于8,另一个位于2、3、4中的一个位子上,故共有4×2+3×2+3×2=20(种).答案:209.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________.(用数字作答)解析:①②③④⑤⑥若1在①或⑥号位,2在②或⑤号位,方法数各4种.若1在②、③、④、⑤号位,2的排法有2种,方法数各8种,故有4+4+8+8+8+8=40(个).答案:4010.标号为A,B,C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法?3(2)若取出的两个球颜色相同,有多少种取法?解析:(1)若两个球颜色不同,则应在A,B袋中各取一个或A,C袋中各取一个或B,C袋中各取一个.∴应有1×2+1×3+2×3=11(种).(2)若两个球颜色相同,则应在B或C袋中取出2个.∴应有1+3=4(种)...