高考专题突破四高考中的立体几何问题1.正三棱柱ABC-A1B1C1中,D为BC中点,E为A1C1中点,则DE与平面A1B1BA的位置关系为________.答案平行解析如图取B1C1的中点为F,连结EF,DF,DE,则EF∥A1B1,DF∥B1B,∴平面EFD∥平面A1B1BA,∴DE∥平面A1B1BA.2.设x、y、z是空间不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“x⊥z且y⊥z⇒x∥y”为真命题的是________.答案②③解析由正方体模型可知①④为假命题;由线面垂直的性质定理可知②③为真命题.3.(2016·无锡模拟)如图,在棱长为6的正方体ABCD-A1B1C1D1中,E,F分别在C1D1与C1B1上,且C1E=4,C1F=3,连结EF,FB,DE,BD,则几何体EFC1-DBC的体积为________.答案66解析如图,连结DF,DC1,那么几何体EFC1-DBC被分割成三棱锥D-EFC1及四棱锥D-CBFC1,那么几何体EFC1-DBC的体积为V=××3×4×6+××(3+6)×6×6=12+54=66.1故所求几何体EFC1-DBC的体积为66.4.如图,在四棱锥V-ABCD中,底面ABCD为正方形,E、F分别为侧棱VC、VB上的点,且满足VC=3EC,AF∥平面BDE,则=________.答案2解析连结AC交BD于点O,连结EO,取VE的中点M,连结AM,MF, VC=3EC,∴VM=ME=EC,又AO=CO,∴AM∥EO,又EO⊂平面BDE,∴AM∥平面BDE,又AF∥平面BDE,AM∩AF=A,∴平面AMF∥平面BDE,又MF⊂平面AMF,∴MF∥平面BDE,又MF⊂平面VBC,平面VBC∩平面BDE=BE,∴MF∥BE,∴VF=FB,∴=2.5.如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.若PA⊥AC,PA=6,BC=8,DF=5.则直线PA与平面DEF的位置关系是________;平面BDE与平面ABC的位置关系是________.(填“平行”或“垂直”)答案平行垂直解析①因为D,E分别为棱PC,AC的中点,所以DE∥PA.又因为PA⊄平面DEF,DE⊂平面DEF,所以直线PA∥平面DEF.②因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4.2又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC,又DE⊂平面BDE,所以平面BDE⊥平面ABC.题型一求空间几何体的表面积与体积例1(2016·全国甲卷)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;(2)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′-ABCFE的体积.(1)证明由已知得AC⊥BD,AD=CD,又由AE=CF得=,故AC∥EF,由此得EF⊥HD,折后EF与HD保持垂直关系,即EF⊥HD′,所以AC⊥HD′.(2)解由EF∥AC得==.由AB=5,AC=6得DO=BO==4,所以OH=1,D′H=DH=3,于是OD′2+OH2=(2)2+12=9=D′H2,故OD′⊥OH.由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面DHD′,于是AC⊥OD′,又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由=得EF=.五边形ABCFE的面积S=×6×8-××3=.所以五棱锥D′-ABCFE的体积V=××2=.思维升华(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行3求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.正三棱锥的高为1,底面边长为2,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.解(1)底面正三角形中心到一边的距离为××2=,则正棱锥侧面的斜高为=.∴S侧=3××2×=9.∴S表=S侧+S底=9+××(2)2=9+6.(2)设正三棱锥P-ABC的内切球的球心为O,连结OP,OA,OB,OC,而O点到三棱锥的四个面的距离都为球的半径r.∴VP-ABC=VO-PAB+VO-PBC+VO-PAC+VO-ABC=S侧·r+S△ABC·r=S表·r=(3+2)r.又VP-ABC=×××(2)2×1=2,∴(3+2)r=2,得r===-2.∴S内切球=4π(-2)2=(40-16)π.V内切球=π(-2)3=(9-22)π.4题型二空...