学业分层测评(四)(建议用时:45分钟)[学业达标]一、选择题1.将“a2+b2+2ab=(a+b)2”改写成全称命题是()A.存在a0,b0∈R,使a+b+2a0b0=(a0+b0)2B.存在a0<0,b0>0,使a+b+2a0b0=(a0+b0)2C.存在a0>0,b0>0,有a+b+2a0b0=(a0+b0)2D.对所有a,b∈R,有a2+b2+2ab=(a+b)2【解析】a2+b2+2ab=(a+b)2是全称命题,隐藏了“对所有a,b∈R”.【答案】D2.下列命题中的真命题是()A.存在x0∈N,使4x0<-3B.存在x0∈Z,使2x0-1=0C.对任意x∈R,2x>x2D.对任意x∈R,x2+2>0【解析】当x∈R时,x2≥0,∴x2+2≥2>0【答案】D3.已知命题p:∃x0∈R,sinx0<x0,则綈p为()A.∃x0∈R,sinx0=x0B.∀x∈R,sinx<xC.∃x0∈R,sinx0≥x0D.∀x∈R,sinx≥x【解析】原命题为特称命题,故其否定为全称命题,即綈p:∀x∈R,sinx≥x.【答案】D4.非空集合A、B满足AB,下面四个命题中正确的个数是()①对任意x∈A,都有x∈B;②存在x0∉A,使x0∈B;③存在x0∉B,使x0∈A;④对任意x∉B,都有x∉A.A.1B.2C.3D.4【解析】根据AB知,①②④正确,③错误.【答案】C5.下列命题中的假命题是()A.对任意x∈R,2x-1>0B.对任意x∈N*,(x-1)2>0C.存在x∈R,lgx<1D.存在x∈R,tanx=2【解析】A项,∵x∈R,∴x-1∈R,由指数函数性质得2x-1>0;B项,∵x∈N*,∴当x=1时,(x-1)2=0,与(x-1)2>0矛盾;C项,当x=时,lg=-1<1;显然D正确.【答案】B二、填空题6.下列命题,是全称命题的是________;是特称命题的是________.【导学号:32550011】1①正方形的四条边相等;②有两个角是45°的三角形都是等腰直角三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.【解析】①②③都是省略了全称量词的全称命题.④是特称命题.【答案】①②③④7.“所有的自然数都大于零”的否定是________.【解析】改变量词并否定判断词.【答案】存在一个自然数小于或等于零8.若命题“存在x0∈R,x+mx0+2m-3<0”为假命题,则实数m的取值范围是________.【解析】由题意可知,命题“对任意x∈R,x2+mx+2m-3≥0”为真命题,故Δ=m2-4(2m-3)=m2-8m+12≤0,解得2≤m≤6.【答案】[2,6]三、解答题9.判断下列命题是全称命题还是特称命题,并判断真假.(1)对任意的实数a、b,关于x的方程ax+b=0恰有唯一解;(2)存在实数x,使得=.【解】(1)该命题是全称命题.当a=0,b≠0时方程无解,故该命题为假命题.(2)该命题是特称命题.∵x2-2x+3=(x-1)2+2≥2,∴≤<.故该命题是假命题.10.写出下列全称命题或特称命题的否定:(1)所有能被3整除的整数都是奇数;(2)每一个四边形的四个顶点共圆;(3)有的三角形是等边三角形.【解】(1)该命题的否定是:至少存在一个能被3整除的整数不是奇数.(2)该命题的否定是:至少存在一个四边形,它的四个顶点不共圆.(3)该命题的否定是:所有三角形都不是等边三角形.[能力提升]1.以下四个命题既是特称命题又是真命题的是()A.每一个锐角三角形的内角都是锐角B.至少有一个实数x,使x2≤0C.两个无理数的和必是无理数D.存在一个负数x0,使>2【解析】B,D是特称命题,D是假命题,B是真命题.【答案】B2.“关于x的不等式f(x)>0有解”等价于()A.存在x∈R,使得f(x)>0成立B.存在x∈R,使得f(x)≤0成立C.对任意x∈R,使得f(x)>0成立D.对任意x∈R,f(x)≤0成立2【解析】“关于x的不等式f(x)>0有解”等价于“存在实数x,使得f(x)>0成立”,故选A.【答案】A3.命题“偶函数的图像关于y轴对称”的否定是________.【解析】本题中的命题是全称命题,省略了全称量词,加上全称量词后该命题可以叙述为:所有偶函数的图像关于y轴对称.将命题中的全称量词“所有”改为存在量词“有些”,结论“关于y轴对称”改为“关于y轴不对称”,所以该命题的否定是“有些偶函数的图像关于y轴不对称”.【答案】有些偶函数的图像关于y轴不对称4.已知对任意x∈(-∞,1],不等式(a-a2)4x+2x+1>0恒成立.求a的取值范围.【导学号:32550012】【解】令2x=t,∵x∈(-∞,1],∴t∈(0,2],∴a2-a<.要使上式在t∈(0,2]上恒成立,只需求出f(t)=在t∈(0,2]上的最小值即可.∵f(t)==2+=2-,且∈,∴f(t)min=f(2)=.∴a2-a<.∴-<a<.所以a的取值范围是.3