电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(完整版)流体力学雷诺方程的推导VIP免费

(完整版)流体力学雷诺方程的推导_第1页
1/7
(完整版)流体力学雷诺方程的推导_第2页
2/7
(完整版)流体力学雷诺方程的推导_第3页
3/7
主要参数R=20mm,L=40mm,n=1000rpm,*=0.3,c=2mm.各种流体润滑问题都涉及在狭小间隙中的流体粘性流动,描写这种物理现象的基本方程为雷诺方程,他的普遍形式是£(匹空)+2(匹色)=6(U迥+V空+2迥)dx耳Qxdy耳dydxdydt这个椭圆形的偏微分方程仅仅对于特殊的间隙形状才可能求得解析解,而对于复杂的几何形状或者工况条件下的问题,无法用解析方法求得精确解。随着迅速发展的点算技术,数值算法成为求解润滑问题的有效途径。数值法师讲偏微分方程转化为代数方程组的变换方法。它的一般原则是:首先将求解域划分成有限个数的单元,并使每一个单元充分的微小。以至于可以认为在各单元内的未知量(本人毕业设计中设油膜压力为P)相等或者依照线性变化,而不会造成很大的误差。然后,通过物理分析或数学变换方法,将求解的偏微分方程写成离散形式,即使将它转化成一组线性代数方程。该代数方程组表示了各个单元的待求未知量于周围各单元未知量的关系。最后根据消去法或者迭代法求解代数方程组,从而求得整个求解域上的未知量。用来求解雷诺方程的数值方法很多,最常用的是有限元差分方法、有限元法和边界元法,这些方法都是将求解域划分成许多个单元,但是处理方法各不相同。在有限差分法和有限元法中,代替基本方程的函数在求解域内是近似的,但完全满足边界条件。而边界元法所用的函数在求解域内完全满足基本方程,但是在边界上则近似的满足边界条件。一、雷诺方程的数值解法根据边界条件求解雷诺方程,这在数学上称为边值问题。首先将所求解的偏微分方程无量纲化。这样做的目的是减少自变量和因变量的数目,同时用无量纲参数表示的解具有通用性。然后,将求解域划分成等距的或者不等距的网格,如图1-1为等距网格。图1-1沿轴向将Y划分为8个等距区间,沿周向从8=0到0=2兀划分为12个等距区间。这样在Y方向有13个节点,0方向有9个节点,总计13x9=117个节点。则A0=丄兀,AY=1。68(彳)(1-有限差分法如果用P代表所求的未知量例如油膜压力,则变量P在整个域中的分布可以用各节点的P值来表示。根据差分原理,任意节点0(i,j)的一阶和二阶偏导数都可以由其周围的节点变量值来表示。如图1-2所示,如果采用中差分公式,则变量P在0(i,j)点的偏导数为图.1-2(1-1)(1-2)竺)学口(Ay)2以P为润滑膜压力,雷诺方程的二维二阶偏微分方程的标准形式为:A芳+B空+C釋+D竺二E5025Y2505Y其中A,B,C,D和E都为已知量。然后将上述方程应用到各个节点,根据中差分公式(1-1)和(1-2)用差商代替偏导数,即可求得各个节点的变量p于相邻各个节点变量的关系。这-j种关系可以写成:其AA2A02A式(1-4)中各系数值随节点位置而改变。方程(1-4)是有限差分法的计算方程,+CpEi+1,j+CpWi-1,j1-4)1-5)对于每个节点都可以写出一个方程,而在边界(h3dhd0(2-的节点变量应满足边界条件,它们的数值是已知量。这样,就可以求得一组线性代数方程。方程与未知量数目相一致,所以可以求解。采用消去法或者迭代法求解代数方程组,并使计算结果满足一定的收敛精度,最终求得整个求解域上各节点的变量值。求解代数方程使用迭代法求解。1、雷诺方程的无量纲化定常雷诺方程(2-1)将轴承表面沿平面展开,如图1-1所示,并代入x=R0,dx=Rd9.得Q,h3QpQ2ph3Qh()+=6u-RQ0HRd0Qy2耳Rd0等式两边同时乘以HR2则雷诺方程变为若令y二YL/2,a=(2R/L)2,h二c(1+sco0)二Hc,p二P6UHRC22-(2-4)采用有将QR/L)2代入得&(口&P)—&2P_dH茁(H3茁)+3&YT-TO-由h—c(l+wcoS9)—Hc得H—1+8cosO代入(2-3)式,得&P&2P3(£sinO)H2丽+H2丽7+H3"_d(1+wcosO)dO再次化简得无量纲雷诺方程-3(esinO)&P&2P&2P8sinO\‘++a—-1+8COSO&O&O2&Y2(1+8cosO)3cR为轴承半径,L为轴承长度,8为偏心8—e/c率,e为偏心距,为半径间隙,元差分法进行迭代计算。式(1-4)为标准形式,参考标准式(1-3)可求得标准式中A,B,C,D,E的值。A-1,B-a,C--38sinO,D-0,E――is連1+8cosO(1+8cosO)3将以上各值代入式(1-5)求得代入后得(H3c3化简得dHdO&P(H3河)+H(dH70CNCSCECWGK将已知值代入式(1-4)得aA62一2(A62+aAY2)aA62一2(A62+aAY2)2(1+8cos6)-3A6)8sin62A62(1+8cos6)2(1+8cos6)+3A68sin62A62(...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(完整版)流体力学雷诺方程的推导

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部