一次函数复习课教学设计【教材分析】关于一次函数的知识结构如图通过本课的复习让学生巩固一次函数图象的画法和一次函数的性质,并对一次函数进行拓展,本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。【学情分析】本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解如何研究一个具体函数的图象与性质的基础上进行的。原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间。【教学目标】知识技能:1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图象,并能结合图象进一步研究相关的性质;3、巩固一次函数的性质,并会应用。过程与方法:1、学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;2、通过习题,使学生进一步体会“数形结合”、“模型思想”、“分类思想”以及“待定系数法”。情感态度:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。教学重点难点教学重点:复习巩固一次函数的图象和性质,并能简单应用。教学难点:在理解的基础上结合数学思想分析、解决问题。【教学过程】教学过程分为三部分1、知识回顾先独立填空,四人小组交流纠错、讲解、补充。一、一次函数与正比例函数的概念一般地,形如的函数,叫做正比例函数。一般地,形如的函数,叫做一次函数。二、一次函数的图象和性质1、形状一次函数的图象是一条2、画法确定个点就可以画一次函数图像。一次函数与轴的交点坐标(,0),与轴的交点坐标(0,),正比例函数的图象必经过两点分别是(0,)、(1,)。第1页一次函数一次函数的图象一次函数的性质图象特征及画法与正比例函数图象的联系解析式的确定增减性应用3、性质(1)一次函数,当0时,的值随值得增大而增大;当0时,的值随值增大而减小。(2)正比例函数,当0时,图象经过一、三象限;当0时,图象经过二、四象限。(3)一次函数的图象如下图,请你将空填写完整。三、一次函数与正比例函数的关系正比例函数是特殊的一次函数,一次函数包含正比例函数。一次函数当0,0时是正比例函数。一次函数可以看作是由正比例函数平移︱︱个单位得到的,当>0时,向平移个单位;当<0时,向平移︱︱个单位。四、待定系数法确定一次函数解析式通过两个条件(两个点或两对数值)来确定一次函数解析式。2、巩固基础本部分是本节课的重点内容,所以采取先独立完成,再小组交流,再生生答疑、师生答疑,最后独立修改。相信你的选择1、下列函数中是一次函数的是()A.B.C.D.2、关于函数,下列说法中正确的是()A.函数图象经过点(1,5)B.函数图像经过一、三象限C.随的增大而减小D.不论取何值,总有3、一次函数的图象不经过()。A.第一象限B.第二象限C.第三象限D.第四象限4、如果点M在直线上,则M点的坐标可以是()A.(-1,0)B.(0,1)C.(1,0)D.(1,-1)试试你的身手1、(如图)与轴的交点坐标,与轴的交点坐标,直线与两坐标轴所围成的三角形面积为。2、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。3、已知一次函数的图象过点与,则这个一次函数随的增大而。4、一次函数的图象过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数的解析式:_______________。设计意图:本课内容重点就在这部分,所以必须要让学生研究明白,不能得过且过。当学生经过独立完成、小组交流之后,大部分的同学,大部分的题已经解决了,剩下部分有学生答疑或者教师答疑,这样研究比较第2页k0,b0k0,b0k0,b0k0,b0透彻,也可以使学生学会学习方法。3、能力提升挑战你的技能这一部分是由一组题窜组成,难度逐步增大,所以让学生经历独立思考、四人组合作到八人组合作,教师课件展示。1、已知一次函数的图象过点A...