巩固练习(学生独学)1.某旅行团计划今年暑假组织老年团到台湾旅游,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆可供选择,其收费标准为每人每天120元,并且推出各自不同的优惠方案:甲宾馆是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙宾馆是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.设老年团的人数为x.(1)根据题意,用含x的式子填写下表:x≤3535<x<45x=45x>45甲宾馆收费/元120x5280乙宾馆收费/元120x120x5400(2)当x取何值时,旅行团在甲、乙两家宾馆的实际花费相同?解:(1)108x+420108x+42096x+1080(2)当x≤35时,旅行团在甲、乙两家宾馆的实际花费相同;当35<x≤45时,选择甲宾馆便宜;当x>45时,甲宾馆的收费是y甲=108x+420,乙宾馆的收费是y乙=96x+1080,令108x+420=96x+1080,解得x=55.综上,当x≤35或x=55时,旅行团在甲、乙两家宾馆的实际花费相同.2.某学校为改进学校教室空气质量,决定引进一批空气净化器,已知有A,B两种型号可供选择,学校要求每台空气净化器必须多配备一套滤芯以便及时更换.已知每套滤芯的价格为200元,若购买20台A型和15台B型净化器共花费80000元;购买10台A型净化器比购买5台B型净化器多花费10000元.(1)求两种净化器的价格;(2)若学校购买两种空气净化器共40台,且A型净化器的数量不多于B型净化器数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设每台A型净化器的价格为a元,每台B型净化器的价格为b元.由题意,得解得即每台A型净化器的价格为2000元,每台B型净化器的价格为2200元.(2)设购买台A型净化器x台,B型净化器为(40-x)台,总费用为y元.由题意,得x≤3(40-x),解得x≤30.y=(2000+200)x+(2200+200)(40-x)=-200x+96000.∵-200<0,∴y随x的增大而减小,当x=30时,y取最小值,y=-200×30+96000=90000,40-x=10,即购买A型净化器30台,B型净化器10台,最少费用为90000元.3.现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:运往地车型甲地(元/辆)乙地(元/辆)大货车720800小货车500650(1)这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.解:(1)设大货车用x辆,则小货车用(18-x)辆.根据题意,得16x+10(18-x)=228.解得x=8,∴18-x=18-8=10.即大货车用8辆,小货车用10辆.(2)w=720a+800(8-a)+500(9-a)+650·[10-(9-a)]=70a+11550(0≤a≤8且a为整数).(3)由16a+10(9-a)≥120,解得a≥5.又∵0≤a≤8,∴5≤a≤8且a为整数.∵w=70a+11550,且70>0,∴w随a的增大而增大,∴当a=5时,w最小,最小值为w=70×5+11550=11900.故使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11900元.