加减消元法解二元一次方程组1.掌握用加减消元法解二元一次方程组的步骤;2.熟练运用消元法解简单的二元一次方程组;3.培养学生的分析能力,转化能力,激发学生学习数学的兴趣。重点:会用加减消元法解二元一次方程组难点:灵活运用加减消元法的技巧消元:二元一元写解求解代入变形2.用代入法解方程的步骤是什么?1.解二元一次方程组的基本思路是什么?x-3y=8,①5x+3y=4.②怎样解下面的二元一次方程组呢?分析:观察方程组中的两个方程,未知数y的系数互为相反数,所以把这两个方程两边分别相加,就可以消去未知数y,得到一个一元一次方程.解:由②+①得:6x=12x=2把x=2代入①,得2-3y=8解得:y=-2所以原方程组的解是x=2,y=-2.问题1:解下面的二元一次方程组3x5y21,2x5y-11.①②发现之旅问题2:联系上面的解法,想一想怎样解方程组3x5y21,2x5y-11.①②发现之旅+上面这些方程组的特点是什么?解这类方程组的基本思路是什么?主要步骤有哪些?主要步骤:特点:基本思路:写解求解加减二元一元.加减消元:消去一个元;分别求出两个未知数的值;写出原方程组的解.同一个未知数的系数相同或互为相反数.【例】用加减法解方程组:2x3y12,3x4y17.当方程组中两方程不具备上述特点时,必须用等式性质来改变方程组中方程的形式,即得到与原方程组同解的且某未知数系数的绝对值相等的新的方程组,从而为加减消元法解方程组创造条件.①×3得:所以原方程组的解是x3,y2.①②分析:③-④得:y=2,把y=2代入①,解得:x=3,②×2得:6x+9y=36③6x+8y=34④用加减消元法解方程组:②①x1y1,32x1y2.24解:由①×6,得2x+3y=4③由②×4,得2x-y=8④由③-④得:y=-1把y=-1代入②,解得:7x,2y1.所以,原方程组的解是7x,2通过本课时的学习,需要我们掌握:1.解二元一次方程组的基本思路是消元.2.消元的方法有:代入消元和加减消元.3.解二元一次方程组的一般步骤:消元、求解、写解.2x-6y=8,5x+6y=4.解二元一次方程组.作业训练2x-3y=8,5x-3y=6.已知求x-y的值2x+y=7,x+2y=6.