解决问题的策略——转化课前谈话:曹冲称象的故事。课前5分钟师:孩子们,现在到上课还有一会儿时间,老师稍稍准备一下,大家先看一段动画片好吗?(播放课件):(板书课题:解决问题的策略)师:小曹冲聪明吗?从这个故事我们大家推测一下小曹冲平时可能是个怎样的孩子?师:我相信大家今天上课的时候也能够表现得和小曹冲一样(聪明、好学、大胆)!师:下面请大家把自己的东西整理一下,我们准备上课好吗?一、故事引入5分钟1、师:过去我们已经接触过不少的策略,这节课我们继续来关注策略。课前我们又重温了那个非常经典的《曹冲称象》的故事,让我们一起思考这样几个问题:(1)曹冲将称“大象”转化成了称“什么”?(生答后,师:曹冲把原来称大象转化成了——?)(板书:原问题新问题)(2)为什么要进行转化?(大象是个庞然大物,不方便称重)(3)为什么要在船舷上刻那道线?(师:故事中有一个重要的细节——在船上作了个记号,这是为什么?)(师:虽然把大象转化成了石头,但是重量并没有变化!)(4)一定得转化成石头吗?(还可以……)2、师:这种转化的策略对于我们的数学学习问题又有什么启发呢?今天我们就一起来思考怎样用转化的策略解决数学问题。(手指屏幕)(板书:转化)二、直观感受1、比一比10分钟这两幅图的面积相等吗?(1)学生自由猜测。1有同学已经想到了,也有同学还觉得比较困惑。谁能给大家说说这两幅图难在什么地方?(因为它太不规则了。)预设:如果学生一直认为相等则:你能确定它们一定是相等的吗?我们可以验证一下。1(2)学生活动。3不规则怎么办呢?(太复杂怎么办呢?)同桌的两个同学可以讨论一下,除了助学单上有这两幅图,每桌的两个同学老师都为你们准备了这样的两个图形(图形在在信封里),我们可以一起来看一看、想一想、画一画、折一折甚至剪一剪、拼一拼,用你喜欢的方法自己试一试。(师巡视找出不同的方法,留作稍后集体交流)(3)集体交流3谁愿意上来和大家交流一下你们的想法?反馈:A学生可能会用数方格的方法。师:用数方格的方法先算出每个图形的面积,然后比较它们的大小,这是个不错的思路。图形比较复杂,我们怎么用数方格的方法得出它们的面积呢?(先数整格再数半格的个数,面积是整格数+半格÷2)(同步演示课件)师:数方格时需要注意什么呢?(特别接近整格的可以看成整格)师:不过你们觉得数方格的方法解决这个问题方便吗?B学生想到通过平移旋转的手段将原图形转化成长方形,从而进行比较。这时指名学生上来讲解,用课件同步演示“转化”的过程。(4)小结2听了她的讲解,大家还有什么问题要问她吗?(如果学生没有,则我还有几个疑问,可以问问她吗?)A、你为什么要进行这种转化呢?师:将一个复杂的不规则图形转化成了一个简单的规则图形。(板书:复杂简单)B、你是怎么看出这凸出的部分正好可以填在这里的?C、转化之后什么变了,什么没有变?师:为什么比较这两个长方形的面积相等就说明原来两个图形的面积相等呢?)【强调:用转化来表述。学生可能会说变化,或者变成等等,这时老师强调:我还有个小建议,建议你把“变化”换成“转化”,因为转化是一种变化,但不是一种随意的变化,这里的图形的形状虽然发生了变化但是什么没有变?(面积没变)】(5)都是这样想的吗?我刚才还看到有孩子是这样转化的(展示学生的作品),可以吗?1师:无论怎么转化,它的面积都不能变化。2、试一试5分钟师:想不想再试几道题?(1)用分数表示各图中的涂色部分。(2分钟做,3分钟交流)2(——)(——)(——)(选做题)(2)一块草坪,被4条1米宽的小路平均分成了9小块。草坪的面积是多少平方米?(怎样计算比较简便)老师发现我们五2班的同学特别善于观察,爱动脑筋,表现特别棒!三、丰富体验8分钟除了研究图形的面积,我们还学习了周长,看——(一)练一练1、观察下面的两个图形,想一想,它们的周长相等吗?(1)这两幅图的周长相等吗?(学生的回答可能两种都有。)(2)口说无凭,到底怎样呢?下面还是请大家自己在作业纸上移一移,画一画再比比看。(3)现在你觉得他们的周长还相等吗?(...