2014—2015学年上期单元题八年级数学参考答案第十一章数的开方一、选择题:1—5:DCDBD;6—10:CCDBC二、填空题:11.2;12.4;13.3;14.±5;15.①②③④;16.有理数:3.14,,,,,;无理数:,,,0.2020020002…;17.,±2,;18.2c-2a;19.11;20.1三、解答题:21.⑴-0.3,⑵-3,⑶,⑷,⑸,⑹;22.1;23.或;24.m=1,x=6;25.2c—3a;26.0.3米;27.32;28.3;29.12厘米;30.⑴,在整数3至4之间;⑵AC2=AB2+BC2.第十二章整式的乘除一、选择题:1-5:BADCB;6-10:CCDCA二、填空题:11.x2-x-6;12.576;13.a7;14.-12mn或12mn;15.-(a-b)5或(b-a)5;16.x2+1;17.m=-8;18.3(m+1)2;19.x3-1;20.1三、解答题:21.4x⑴2+20xy+25y2,⑵,⑶-54a5b7+54a4b7+27a3b6,⑷m3+27,⑸,⑹99999975;22.(⑴)2,⑵3mn4(m+2n)(m-2n),⑶x(x-y)2,⑷;23.;24.;25.36;26.-2x2y2+4xy5-3y3;27.-2a⑴2+12a,-32,⑵;28.30;29.4mn;30.73⑴,⑵14;31.根据公式(a+2b)2=a2+4ab+4b2,可知应取甲、乙、丙三种地砖块数的比是1:4:4第十三章全等三角形一、选择题:1-5:BDCCA;6-10:DBBCD二、填空题:11.略;12.略;13.30º;14.AC=DB,或∠E=∠F,或∠ACE=∠DBF;15.6;16.AB=AC或∠ABC=∠ACB或BE=CD或∠ECB=∠DBC;17.三条边的中垂线的交点;18.55º;19.40;20.3三、解答题:21.略;22.解:△DBE是等边三角形.理由如下(如右图): △ABC是等边三角形,∴∠A=∠B=∠C=60º;1 D是AB边上一点,DE∥AC,∴∠BDE=∠A=60º,∠BED=∠C=60º,∴∠B=180º-∠BDE-∠BED=60º,∴∠B=∠BDE=∠BED,∴△DBE是等边三角形.23.证明:如右图: ∠BAE=∠CAE,∴∠BAD=∠CAD∴在△ABD和△ACD中,有:AB=AC,∠BAD=∠CAD,AD=AD∴△ABD≌△ACD,∴BD=CD,即∠DBC=∠DCB.24.解:如右图: AD=BD,∴∠BAD=∠DBA AB=AC=CD,∴∠CAD=∠CDA=2∠DBA,∠DBA=∠C∴∠BAC=3∠DBA ∠ABC+∠BAC+∠C=180°,∴5∠DBA=180°∴∠DBA=36°,∴∠BAC=3∠DBA=108°.25.⑴证明:如图: AB=AC,∴∠B=∠C,在△DBE和△ECF中,有:BD=CE,∠B=∠C,BE=CF∴△DBE≌△ECF,∴DE=EF,即△DEF是等腰三角形.⑵解:当∠A=60º时,△DEF是等边三角形,理由如下: △DBE≌△ECF,∴∠FEC=∠BDE,∴∠DEF=180º-∠BED-∠FEC=180º-∠DEB-∠EDB=∠B,∴当∠A=60º时,∠B=∠DEF=60º,∴△DEF是等边三角形.26.⑴证明:如右图: OE平分∠AOB,∴∠AOE=∠BOE,即,∠COE=∠DOE在△COE和△DOE中,有:CO=DO,∠COE=∠DOE,OE=OE∴△COE≌△DOE,∠ODE=∠OCE又 EC⊥OA,垂足为C,∴∠OCE=90°,即:∠ODE=∠OCE=90°,∴ED⊥OB.⑵ △COE≌△DOE,∴EC=ED,∠CEO=∠DEO.∴OE平分线段CD.27.AF=CG⑴证明:在△ABF和△CBG中 四边形ABCD和四边形EFBG都是正方形∴BF=BG,AB=BC,∠ABF=∠CBG=90°∴△ABF≌△CBG∴AF=CG(2)存在,2由(1)证明过程知是Rt△ABF和Rt△CBG。将Rt△ABF绕点B顺时针旋转90°,Rt△ABF可与Rt△CBG完全重合。(或将Rt△CBG绕点B逆时针旋转90°,Rt△CBG可与Rt△ABF完全重合)28.证明:如图: ,即AF∥BC∴∠F=∠CBE,又点为的中点,∴DE=CE,∴在△FED和△BEC中,有:∠F=∠CBE,DE=CE,∠FED=∠BEC∴△FED≌△BEC,∴29.⑴证明:如图: ∠BAC=90º,∴∠BAD+∠CAE=90°又∠BAD+∠DBA=90°∴∠DBA=∠EAC在△DBA和△EAC中∴△DBA≌△EAC(AAS)∴BD=AE⑵还相等,即:BD=AE,理由如下:如图: ∠BAC=90º,∠BAD+∠CAE=90º,又∠CAE+∠ACE=90ºº,∴∠BAD=∠ACE在△DBA和△EAC中∴△DBA≌△EAC(AAS),∴BD=AE(3)BD、CE与DE的关系是:DE=BD+CE.第十四章勾股定理一、选择题:1-5:ACCCD;6-8:BBA二、填空题:9.①10,②,③6;10.50;11.1,2;12.25;13.;14.6;15.45;16.10,三、解答题:17.分别运算可得(2)可以。18.30提示:设AD=x,运用勾股定理求得x=10,矩形面积80,折叠产生的三角形面积25,所以80-50=30;19.垂直,提示:分别求出线段EF,DE,DF的长,利用勾股定理逆定理证明。20.分两种情况计算,高在三角形内和高在三角形外。990平方米或210平方米。21.DP=2.4;22.证明:用反证法。假设PB≠PC不成立...