等差数列与差比数列的通项公式的通项公式:等差数列}{na)()1(1Nndnaan),()(Nmndmnaamn推广:的通项公式:等比数列}{na),(Nmnqaamnmn推广:)(11Nnqaann}{,然后直接套用及出为等差(比)数列,求方法:若na类型一:等差数列与等比数列的通项:ma其中一项)(公比公差qd公式=为整数,则通项公式且公比,为等比数列,若:已知例nnaqaaaaa512,124}{17483,然后套公式。与程组,解出的方与表示,得出与全部用,,,本题也可以把qaqaqaaaaa1118743124512}{838374aaaaaaan,为等比数列,则分析:是整数,又与的两根是方程与故知qxxaa4128051212428313353883)2(2321284nnnqaaqqaaaa,,12n,等比512}{8374aaaaan的通项公式。,求数列且为等差数列,已知数列卷湖南}{9,3))}(1({log).(131*2nnaaaNna12)1(log)1(log1232ddaa略解:,)1(1)1(log2nnan.12nna练习:1(1)21nandn1112nnnqbb是各项都为正数的等比是等差数列,设全国nnba).(2,求数列数列,且13,21,1355311bababa的通项公式。与nnba类型二:类等差(比)数列,方法:累加(乘)的通项公式。求数列的值;求的等比数列成公比不为且,是常数,,中,例:数列nnnnacaaanccnaaaa)2()1(1,,)3,2,1(232111)(1nfaann即)(1ngaann与31223211,,aaaaaa的等比数列得成公比不为分析:由naacccnn2,2)32(2)2(12故有即)1(2,,32,22,21342312naaaaaaaann),1()]1(321[21nnnaan上面各式相加得),3,2,1(22nnnan故一、若数列有形如an+1=an+f(n)的解析式,而f(1)+f(2)+…+f(n)的和是可求的,则可用多式累(迭)加法求得an.(2011年厦门质检)已知数列{an}中,a1=20,an+1=an+2n-1,n∈N*,则数列{an}的通项公式an=______.解析:由条件an+1=an+2n-1,n∈N*,即an+1-an=2n-1,得a2-a1=1,a3-a2=3,a4-a3=5,…,an-1-an-2=2n-5,an-an-1=2n-3,以上n-1个式子相加并化简,得an=a1+(n-1)2=n2-2n+21.答案:n2-2n+21变式探究1.已知数列{an}中,a1=1,an+1=an+2n,求an.解析:当n≥2时,a2-a1=2,a3-a2=22,a4-a3=23,…,an-an-1=2n-1.将这n-1个式子累加起来可得an-a1=2+22+…+2n-1,∴an=a1+2+22+…+2n-1=1+2+22+…+2n-1=2n-1.当n=1时,a1适合上式,故an=2n-1.二、若数列有形如an=f(n)·an-1的解析关系,而f(1)·f(2)…f(n)的积是可求的,则可用多式累(迭)乘法求得an.设{an}的首项为1的正项数列,且-n+an+1an=0,求它的通项公式.()n+1a2n+1a2n解析:由题意a1=1,an>0,(n=1,2,3,…),由()n+1a2n+1-na2n+an+1an=0,得()an+1+an[]()n+1an+1-nan=0. an>0,∴an+1+an≠0,∴有an+1=nn+1an. an=anan-1×an-1an-2×…×a2a1×a1,∴an=n-1n·n-2n-1…12·1=1n,∴an=1n.由()n+1a2n+1-na2n+an+1an=0,得()an+1+an[]()n+1an+1-nan=0. an>0,∴an+1+an≠0,∴有an+1=nn+1an. an=anan-1×an-1an-2×…×a2a1×a1,∴an=n-1n·n-2n-1…12·1=1n,∴an=1n.的通项公式为列,则数且满足中,已知数列:例nnnnannaaaa21211nnnnnaannnaa11)2(2nnannann)1()2)(1(1方法二:对应),小系数与(大系数与nnaa1是常数数列则可构造nann)1(11645342312:13423121nnaaaaaaaannaannnn-得分析)1(21)1(2111nnaannaann)1(21221)1(11nnaaaannnn,故有)1(2nnan累乘nnaS,求知类型三:求解方法:可直接应用公式)2()1(11nSSnSannn的通项公式。的图象上,求数列均在函数,点和为的前,数列为函数的图象经过原点,其导例:已知二次函数nnnn...