一轮复习课件一轮复习课件正弦定理、余弦定理应用举例1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(除三角外)才能求解,常见类型及其解法如表所示.已知条件应用定理一般解法一边和两角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b与c.在有解时只有一解忆一忆知识要点要点梳理两边和夹角(如a,b,C)余弦定理正弦定理由余弦定理求第三边c;由正弦定理求出小边所对的角;再由A+B+C=180°求出另一角.在有解时只有一解三边(a,b,c)余弦定理由余弦定理求出角A、B;再利用A+B+C=180°,求出角C.在有解时只有一解两边和其中一边的对角(如a,b,A)正弦定理余弦定理由正弦定理求出角B;由A+B+C=180°,求出角C;再利用正弦定理或余弦定理求c.可有两解,一解或无解忆一忆知识要点要点梳理2.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.3.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).忆一忆知识要点要点梳理(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的正切.例1如图,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?测量距离问题测量距离问题解由题意知AB=5(3+3)海里,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°.在△ABD中,由正弦定理,得DBsin∠DAB=ABsin∠ADB,∴DB=AB·sin∠DABsin∠ADB=53+3·sin45°sin105°=53+3·sin45°sin45°cos60°+cos45°sin60°=533+13+12=103(海里).又∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,BC=203(海里),在△DBC中,由余弦定理,得CD2=BD2+BC2-2BD·BC·cos∠DBC=300+1200-2×103×203×12=900,∴CD=30(海里),∴需要的时间t=3030=1(小时).故救援船到达D点需要1小时.这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.注意:①基线的选取要恰当准确;②选取的三角形及正、余弦定理要恰当.探究提高要测量对岸A、B两点之间的距离,选取相距3km的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,求A、B之间的距离.变式训练1解如图所示,在△ACD中,∠ACD=120°,∠CAD=∠ADC=30°,∴AC=CD=3km.在△BCD中,∠BCD=45°,∠BDC=75°,∠CBD=60°.∴BC=3sin75°sin60°=6+22.在△ABC中,由余弦定理,得AB2=(3)2+6+222-2×3×6+22×cos75°=3+2+3-3=5,∴AB=5(km),∴A、B之间的距离为5km.例2(1)(2014·吉安模拟)要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,则电视塔的高度为m.测量高度问题测量高度问题【规范解答】(1)如图,设电视塔AB高为xm则在Rt△ABC中,由∠ACB=45°,得BC=x.在Rt△ADB中,∠ADB=30°,所以BD=x.3在△BDC中,由余弦定理,得BD2=BC2+CD2-2BC·CD·cos120°,即(x)2=x2+402-2·x·40·cos120°,解得x=40,所以电视塔高为40m.3如图,某人在塔的正东方向上的C处在与塔垂直的水平面内沿南偏西60°的方向以每小时6千米的速度步行了1分钟以后,在点D处望见塔的底端B在东北方向上,已知沿途塔的仰角∠AEB=α,α的最大值为60°.(1)求该人沿南偏西60°的方向走到仰角α最大时,走了几分钟;(2)求塔的高AB.变式训练2解(1)依题意知,在△DBC中,∠BCD=30°,∠DBC=180°-45°=135°,CD=6000×160=100(...