电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

数列的概念与简单表示法VIP免费

数列的概念与简单表示法_第1页
1/15
数列的概念与简单表示法_第2页
2/15
数列的概念与简单表示法_第3页
3/15
64个格子1223344551667788你想得到什么样的赏赐?OK请在第一个格子放1颗麦粒请在第二个格子放2颗麦粒请在第三个格子放4颗麦粒请在第四个格子放8颗麦粒依次类推……陛下,赏小人一些麦粒就可以。?456781567812334264个格子你认为国王有能力满足上述要求吗每个格子里的麦粒数都是前一个格子里麦粒数的2倍且共有64格子2213263220212?18446744073709551615传说古希腊毕达哥拉斯学派数学家研究的问题:三角形数:1,3,6,10,···正方形数:1,4,9,16,···上述棋盘中各格子里的麦粒数按先后次序排成一列数:633222221,,,,,,,,4131211504321,,,,,1,2,3,4……的倒数排列成的一列数:高一(24)班每次考试的名次由小到大排成的一列数:-1的1次幂,2次幂,3次幂,……排列成一列数:1111,,,,,,,1111无穷多个1排列成的一列数:三角形数:1,3,6,10,···正方形数:1,4,9,16,···633222221,,,,354321,,,,1111,,,,,,,1111共同特点共同特点:1.都是一列数;2.都有一定的顺序12345,41,31,211,1,3,6,10,···1,4,9,16,···定义:按一定顺序排列着的一列数称为问1:数列,2,改为13,…,35,2,,…,35331请问:是不是同一数列?问2:数列4改为:-1,1,-1,1……1,-1,1,-1……,请问:是不是同一数列?(数列具有有序性)12345,,,,1111354321,,,,,,,,4131211633222221,,,,1111,,,数列中的每一个数叫做这个数列的项。各项依次叫做这个数列的第1项(首项),第2项,······,第n项,······数列的分类(1)按项数分:项数有限的数列叫有穷数列项数无限的数列叫无穷数列(2)按项之间的大小关系:递增数列,递减数列,摆动数列,常数列。有穷数列无穷数列有穷数列无穷数列无穷数列递增数列递增数列递减数列摆动数列常数列练习:P33观察1102数列的一般形式可以写成:简记为其中,,,,,naaaa321是数nana第1项第2项第3项第n项的第n项与项数之间的关系可以用一个公式来表示,2n)1-(1a2a3anana列的第n项。12n)64,(*nNn}{n1{}n)35,(*nNn那么这个公式就叫做这个数列的通项公式如果数列na12nnan1nanna123451111-1,,,,,22,12n632,,,,2131n1,,,,23n,,,,3511-,,,,,11,,,1,12n)1(-na或0nnan1)(*Nn)(*Nn)(*Nn例1:设某一数列的通项公式为)1(nnan1234261220高一(24)班考试名次由小到大排成的一列数又如:2315012350每个序号也都对应着一个数(项)序号项从函数的观点看,是的函数。y=f(x)ann函数值自变量从映射的观点看,数列可以看作是:到的映射数列项序号数列项序号(正整数或它的有限子集)项数列的实质序号项即,数列可以看作是一个定义域为正整数集(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值。序号通项公式*N1234567891024681012141618200的图象)1(nnan是些孤立点图象做出常数数列:,4,4,4,412345123450图象,,,,做出摆动数列:11-11--1我们好孤单!我们好孤单!根据数列的前若干项写出的通项公式的形式唯一吗?请举例说明。例1:写出下面数列的一个通项公式,使它的前4项分别是下列各数:;,,,)(;,,,)(0202241312111注意:①一些数列的通项公式不是唯一的②不是每一个数列都能写出它的通项公式③序号。表示项的位置项,其中中的第数列表示这个;而,,,,数列表示为通项的数列,即表示以nnaaaaaaaaannnnnn}{}{}{321本节课学习的主要内容有:1、数列的有关概念2、数列的通项公式;3、数列的实质;4、本节课的能力要求是:(1)会用观察法由数列的前几项求数列的通项公式P381,3,5

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

数列的概念与简单表示法

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部