第 1 讲 空间几何体一、空间几何体1、空间几何体 在我们周围存在着各种各样的物体,它们都占据着空间的一部分。如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。2、多面体和旋转体 多面体:由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。 旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。这条定直线叫做旋转体的轴。多面体旋转体 圆台 圆柱-圆锥 圆柱+圆锥 圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其 余 各 面 都 是 四 边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。用平行的两底面多边形的字母表示棱柱 , 如 : 棱 柱ABCDEF- A1B1C1D1E1F1 。棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、 …… 我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、…… 棱柱的分类二(根据侧棱与底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱正棱柱: 底面是正多边形的直棱柱叫做正棱柱(1) 上 下 底 面平行,且是全等的多边形。(2) 侧 棱 相 等且相互平行。(3) 侧面是平行四边形。 三棱柱 四棱柱 五棱柱 斜棱柱 直棱柱 正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形, 由这些面所围成的几何体叫做棱锥。用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。按底面多边形的边数分类可分为三棱锥、四 棱 锥 、 五 棱 锥 等等,其中三棱锥又叫四面体。特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心 三棱锥 四棱锥 五棱锥 直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。棱 台 用 表 示上、下底面各顶点的字母来表示,如下图,棱 台ABCD-A1B1C1D1 由三棱锥、四棱锥、五棱锥…截得的棱台,分别叫做三棱台,四棱台,五棱台…特 殊 的 棱 锥 -由 正 棱 锥 截 得的 棱 台 叫 正 棱...